Lehman ‘laws’ of software evolution

Derek Jones from The Shape of Code

The so called Lehman laws of software evolution originated in a 1968 study, and evolved during the 1970s; the book “Program Evolution: processes of software change” by Lehman and Belady was published in 1985.

The original work was based on measurements of OS/360, IBM’s flagship operating system for the computer industries flagship computer. IBM dominated the computer industry from the 1950s, through to the early 1980s; OS/360 was the Microsoft Windows, Android, and iOS of its day (in fact, it had more developer mind share than any of these operating systems).

In its day, the Lehman dataset not only bathed in reflected OS/360 developer mind-share, it was the only public dataset of its kind. But today, this dataset wouldn’t get a second look. Why? Because it contains just 19 measurement points, specifying: release date, number of modules, fraction of modules changed since the last release, number of statements, and number of components (I’m guessing these are high level programs or interfaces). Some of the OS/360 data is plotted in graphs appearing in early papers, and can be extracted; some of the graphs contain 18, rather than 19, points, and some of the values are not consistent between plots (extracted data); in later papers Lehman does point out that no statistical analysis of the data appears in his work (the purpose of the plots appears to be decorative, some papers don’t contain them).

One of Lehman’s early papers says that “… conclusions are based, comes from systems ranging in age from 3 to 10 years and having been made available to users in from ten to over fifty releases.“, but no other details are given. A 1997 paper lists module sizes for 21 releases of a financial transaction system.

Lehman’s ‘laws’ started out as a handful of observations about one very large software development project. Over time ‘laws’ have been added, deleted and modified; the Wikipedia page lists the ‘laws’ from the 1997 paper, Lehman retired from research in 2002.

The Lehman ‘laws’ of software evolution are still widely cited by academic researchers, almost 50-years later. Why is this? The two main reasons are: the ‘laws’ are sufficiently vague that it’s difficult to prove them wrong, and Lehman made a large investment in marketing these ‘laws (e.g., publishing lots of papers discussing these ‘laws’, and supervising PhD students who researched software evolution).

The Lehman ‘laws’ are not useful, in the sense that they cannot be used to make predictions; they apply to large systems that grow steadily (i.e., the kind of systems originally studied), and so don’t apply to some systems, that are completely rewritten. These ‘laws’ are really an indication that software engineering research has been in a state of limbo for many decades.

Foundations for Evidence-Based Policymaking Act of 2017

Derek Jones from The Shape of Code

The Foundations for Evidence-Based Policymaking Act of 2017 was enacted by the US Congress on 21st December.

A variety of US Federal agencies are responsible for ensuring the safety of US citizens, in some cases this safety is dependent on the behavior of software. The FDA is responsible for medical device safety and the FAA publishes various software safety handbooks relating to aviation (the Department of transportation has a wider remit).

Where do people go to learn about the evidence for software related issues?

The book: Evidence-based software engineering: based on the publicly available evidence sounds like a good place to start.

Quickly skimming this (currently draft) book shows that no public evidence is available on lots of issues. Oops.

Another issue is the evidence pointing to some suggested practices being at best useless and sometimes fraudulent, e.g., McCabe’s cyclomatic complexity metric.

The initial impact of evidence-based policymaking will be companies pushing back against pointless government requirements, in particular requirements that cost money to implement. In some cases this is a good, e.g., no more charades about software being more testable because its code has a low McCable complexity.

In the slightly longer term, people are going to have to get serious about collecting and analyzing software related evidence.

The Open, Public, Electronic, and Necessary Government Data Act or the OPEN Government Data Act (which is about to become law) will be a big help in obtaining evidence. I think there is a lot of software related data sitting on disks and tapes, waiting to be analysed (NASA appears to have loads to data that they have down almost nothing with, including not making it publicly available).

Interesting times ahead.