Survival rate of WG21 meeting attendance

Derek Jones from The Shape of Code

WG21, the C++ Standards committee, has a very active membership, with lots of people attending the regular meetings; there are three or four meetings a year, with an average meeting attendance of 67 (between 2004 and 2016).

The minutes of WG21 meetings list those who attend, and a while ago I downloaded these for meetings between 2004 and 2016. Last night I scraped the data and cleaned it up (or at least the attendee names).

WG21 had its first meeting in 1992, and continues to have meetings (eleven physical meetings at the time or writing). This means the data is both left and right censored; known as interval censored. Some people will have attended many meetings before the scraped data starts, and some people listed in the data may not have attended another meeting since.

What can we say about the survival rate of a person being a WG21 attendee in the future, e.g., what is the probability they will attend another meeting?

Most regular attendees are likely to miss a meeting every now and again (six people attended all 30 meetings in the dataset, with 22 attending more than 25), and I assumed that anybody who attended a meeting after 1 January 2015 was still attending. Various techniques are available to estimate the likelihood that known attendees were attending meetings prior to those in the dataset (I’m going with what ever R’s survival package does). The default behavior of R’s Surv function is to handle right censoring, the common case. Extra arguments are needed to handle interval censored data, and I think I got these right (I had to cast a logical argument to numeric for some reason; see code+data).

The survival curves in days since 1 Jan 2004, and meetings based on the first meeting in 2004, with 95% confidence bounds, look like this:


Meeting survival curve of WG21 attendees.

I was expecting a sharper initial reduction, and perhaps wider confidence bounds. Of the 374 people listed as attending a meeting, 177 (47%) only appear once and 36 (10%) appear twice; there is a long tail, with 1.6% appearing at every meeting. But what do I know, my experience of interval censored data is rather limited.

The half-life of attendance is 9 to 10 years, suspiciously close to the interval of the data. Perhaps a reader will scrape the minutes from earlier meetings :-)

Within the time interval of the data, new revisions of the C++ standard occurred in 2007 and 2014; there had also been a new release in 2003, and one was being worked on for 2017. I know some people stop attending meetings after a major milestone, such as a new standard being published. A fancier analysis would investigate the impact of standards being published on meeting attendance.

People also change jobs. Do WG21 attendees change jobs to ones that also require/allow them to attend WG21 meetings? The attendee’s company is often listed in the minutes (and is in the data). Something for intrepid readers to investigate.

Growth and survival of gcc options and processor support

Derek Jones from The Shape of Code

Like any actively maintained software, compilers get more complicated over time. Languages are still evolving, and options are added to control the support for features. New code optimizations are added, which don’t always work perfectly, and options are added to enable/disable them. New ways of combining object code and libraries are invented, and new options are added to allow the desired combination to be selected.

The web pages summarizing the options for gcc, for the 96 versions between 2.95.2 and 9.1 have a consistent format; which means they are easily scrapped. The following plot shows the number of options relating to various components of the compiler, for these versions (code+data):

Number of options supported by various components of gcc, over 20 years.

The total number of options grew from 632 to 2,477. The number of new optimizations, or at least the options supporting them, appears to be leveling off, but the number of new warnings continues to increase (ah, the good ol’ days, when -Wall covered everything).

The last phase of a compiler is code generation, and production compilers are generally structured to enable new processors to be supported by plugging in an appropriate code generator; since version 2.95.2, gcc has supported 80 code generators.

What can be added can be removed. The plot below shows the survival curve of gcc support for processors (80 supported cpus, with support for 20 removed up to release 9.1), and non-processor specific options (there have been 1,091 such options, with 214 removed up to release 9.1); the dotted lines are 95% confidence internals.

Survival curve of gcc options and support for specific processors, over 20 years.

OSI licenses: number and survival

Derek Jones from The Shape of Code

There is a lot of source code available which is said to be open source. One definition of open source is software that has an associated open source license. Along with promoting open source, the Open Source Initiative (OSI) has a rigorous review process for open source licenses (so they say, I have no expertise in this area), and have become the major licensing brand in this area.

Analyzing the use of licenses in source files and packages has become a niche research topic. The majority of source files don’t contain any license information, and, depending on language, many packages don’t include a license either (see Understanding the Usage, Impact, and Adoption of Non-OSI Approved Licenses). There is some evolution in license usage, i.e., changes of license terms.

I knew that a fair-few open source licenses had been created, but how many, and how long have they been in use?

I don’t know of any other work in this area, and the fastest way to get lots of information on open source licenses was to scrape the brand leader’s licensing page, using the Wayback Machine to obtain historical data. Starting in mid-2007, the OSI licensing page kept to a fixed format, making automatic extraction possible (via an awk script); there were few pages archived for 2000, 2001, and 2002, and no pages available for 2003, 2004, or 2005 (if you have any OSI license lists for these years, please send me a copy).

What do I now know?

Over the years OSI have listed 110 different open source licenses, and currently lists 81. The actual number of license names listed, since 2000, is 205; the ‘extra’ licenses are the result of naming differences, such as the use of dashes, inclusion of a bracketed acronym (or not), license vs License, etc.

Below is the Kaplan-Meier survival curve (with 95% confidence intervals) of licenses listed on the OSI licensing page (code+data):

Survival curve of OSI licenses.

How many license proposals have been submitted for review, but not been approved by OSI?

Patrick Masson, from the OSI, kindly replied to my query on number of license submissions. OSI don’t maintain a count, and what counts as a submission might be difficult to determine (OSI recently changed the review process to give a definitive rejection; they have also started providing a monthly review status). If any reader is keen, there is an archive of mailing list discussions on license submissions; trawling these would make a good thesis project :-)