Reliability chapter added to “Empirical software engineering using R”

Derek Jones from The Shape of Code

The Reliability chapter of my Empirical software engineering book has been added to the draft pdf (download here).

I have been working on this draft for four months and it still needs lots of work; time to move on and let it stew for a while. Part of the problem is lack of public data; cost and schedule overruns can be rather public (projects chapter), but reliability problems are easier to keep quiet.

Originally there was a chapter covering reliability and another one covering faults. As time passed, these merged into one. The material kept evaporating in front of my eyes (around a third of the initial draft, collected over the years, was deleted); I have already written about why most fault prediction research is a waste of time. If it had not been for Rome I would not have had much to write about.

Perhaps what will jump out at people most, is that I distinguish between mistakes in code and what I call a fault experience. A fault_experience=mistake_in_code + particular_input. Most fault researchers have been completely ignoring half of what goes into every fault experience, the input profile (if the user does not notice a fault, I do not consider it experienced) . It’s incredibly difficult to figure out anything about the input profile, so it has been quietly ignored (one of the reasons why research papers on reported faults are such a waste of time).

I’m also missing an ‘interesting’ figure on the opening page of the chapter. Suggestions welcome.

I have not said much about source code characteristics. There is a chapter covering source code, perhaps some of this material will migrate to reliability.

All sorts of interesting bits and pieces have been added to earlier chapters. Ecosystems keeps growing and in years to come somebody will write a multi-volume tomb on software ecosystems.

I have been promised all sorts of data. Hopefully some of it will arrive.

As always, if you know of any interesting software engineering data, please tell me.

Source code chapter next.

Top, must-read paper on software fault analysis

Derek Jones from The Shape of Code

What is the top, must read, paper on software fault analysis?

Software Reliability: Repetitive Run Experimentation and Modeling by Phyllis Nagel and James Skrivan is my choice (it’s actually a report, rather than a paper). Not only is this report full of interesting ideas and data, but it has multiple replications. Replication of experiments in software engineering is very rare; this work was replicated by the original authors, plus Scholz, and then replicated by Janet Dunham and John Pierce, and then again by Dunham and Lauterbach!

I suspect that most readers have never heard of this work, or of Phyllis Nagel or James Skrivan (I hadn’t until I read the report). Being published is rarely enough for work to become well-known, the authors need to proactively advertise the work. Nagel, Dunham & co worked in industry and so did not have any students to promote their work and did not spend time on the academic seminar circuit. Given enough effort it’s possible for even minor work to become widely known.

The study run by Nagel and Skrivan first had three experienced developers independently implement the same specification. Each of these three implementations was then tested, multiple times. The iteration sequence was: 1) run program until fault experienced, 2) fix fault, 3) if less than five faults experienced, goto step (1). The measurements recorded were fault identity and the number of inputs processed before the fault was experienced.

This process was repeated 50 times, always starting with the original (uncorrected) implementation; the replications varied this, along with the number of inputs used.

For a fault to be experienced, there has to be a mistake in the code and the ‘right’ input values have to be processed.

How many input values need to be processed, on average, before a particular fault is experienced? Does the average number of inputs values needed for a fault experience vary between faults, and if so by how much?

The plot below (code+data) shows the numbers of inputs processed, by one of the implementations, before individual faults were experienced, over 50 runs (sorted by number of inputs):

Number of inputs processed before particular fault experienced

Different faults have different probabilities of being experienced, with fault a being experienced on almost any input and fault e occurring much less frequently (a pattern seen in the replications). There is an order of magnitude variation in the number of inputs processed before particular faults are experienced (this pattern is seen in the replications).

Faults were fixed as soon as they were experienced, so the technique for estimating the total number of distinct faults, discussed in a previous post, cannot be used.

A plot of number of faults found against number of inputs processed is another possibility. More on that another time.

Suggestions for top, must read, paper on software faults, welcome (be warned, I think that most published fault research is a waste of time).

Estimating the number of distinct faults in a program

Derek Jones from The Shape of Code

In an earlier post I gave two reasons why most fault prediction research is a waste of time: 1) it ignores the usage (e.g., more heavily used software is likely to have more reported faults than rarely used software), and 2) the data in public bug repositories contains lots of noise (i.e., lots of cleaning needs to be done before any reliable analysis can done).

Around a year ago I found out about a third reason why most estimates of number of faults remaining are nonsense; not enough signal in the data. Date/time of first discovery of a distinct fault does not contain enough information to distinguish between possible exponential order models (technical details; practically all models are derived from the exponential family of probability distributions); controlling for usage and cleaning the data is not enough. Having spent a lot of time, over the years, collecting exactly this kind of information, I was very annoyed.

The information required, to have any chance of making a reliable prediction about the likely total number of distinct faults, is a count of all fault experiences, i.e., multiple instances of the same fault need to be recorded.

The correct techniques to use are based on work that dates back to Turing’s work breaking the Enigma codes; people have probably heard of Good-Turing smoothing, but the slightly later work of Good and Toulmin is applicable here. The person whose name appears on nearly all the major (and many minor) papers on population estimation theory (in ecology) is Anne Chao.

The Chao1 model (as it is generally known) is based on a count of the number of distinct faults that occur once and twice (the Chao2 model applies when presence/absence information is available from independent sites, e.g., individuals reporting problems during a code review). The estimated lower bound on the number of distinct items in a closed population is:

S_{est} ge S_{obs}+{n-1}/{n}{f^2_1}/{2f_2}

and its standard deviation is:

S_{sd-est}=sqrt{f_2 [0.25k^2 ({f_1}/{f_2} )^4+k^2 ({f_1}/{f_2} )^3+0.5k ({f_1}/{f_2} )^2 ]}

where: S_{est} is the estimated number of distinct faults, S_{obs} the observed number of distinct faults, n the total number of faults, f_1 the number of distinct faults that occurred once, f_2 the number of distinct faults that occurred twice, k={n-1}/{n}.

A later improved model, known as iChoa1, includes counts of distinct faults occurring three and four times.

Where can clean fault experience data, where the number of inputs have been controlled, be obtained? Fuzzing has become very popular during the last few years and many of the people doing this work have kept detailed data that is sometimes available for download (other times an email is required).

Kaminsky, Cecchetti and Eddington ran a very interesting fuzzing study, where they fuzzed three versions of Microsoft Office (plus various Open Source tools) and made their data available.

The faults of interest in this study were those that caused the program to crash. The plot below (code+data) shows the expected growth in the number of previously unseen faults in Microsoft Office 2003, 2007 and 2010, along with 95% confidence intervals; the x-axis is the number of faults experienced, the y-axis the number of distinct faults.

Predicted growth of unique faults experienced in Microsoft Office

The take-away point: if you are analyzing reported faults, the information needed to build models is contained in the number of times each distinct fault occurred.

Mathematical proofs contain faults, just like software

Derek Jones from The Shape of Code

The idea of proving programs correct, like mathematical proofs, is appealing, but is based on an incorrect assumption often made by non-mathematicians, e.g., mathematical proofs are fault free. In practice, mathematicians make mistakes and create proofs that contain serious errors; those of us who are taught mathematical techniques, but are not mathematicians, only get to see the good stuff that has been checked over many years.

An appreciation that published proofs contain mistakes is starting to grow, but Magnificent mistakes in mathematics is an odd choice for a book title on the topic. Quotes from De Millo’s article on “Social Processes and Proofs of Theorems and Programs” now appear regularly; On proof and progress in mathematics is worth a read.

Are there patterns to the faults that appear in claimed mathematical proofs?

A surprisingly common approach, used by mathematicians to avoid faults in their proofs, is to state theorems without giving a formal proof (giving an informal one is given instead). There are plenty of mathematicians who don’t think proofs are a big part of mathematics (various papers from the linked-to book are available as pdfs).

Next time you encounter an advocate of proving programs correct using mathematics, ask them what they think about the uncertainty about claimed mathematical proofs and all the mistakes that have been found in published proofs.

Almost all published analysis of fault data is worthless

Derek Jones from The Shape of Code

Faults are the subject of more published papers that any other subject in empirical software engineering. Unfortunately, over 98.5% of these fault related papers are at best worthless and at worst harmful, i.e., make recommendations whose impact may increase the number of faults.

The reason most fault papers are worthless is the data they use and the data they don’t to use.

The data used

Data on faults in programs used to be hard to obtain, a friend in a company that maintained a fault database was needed. Open source changed this. Now public fault tracking systems are available containing tens, or even hundreds, of thousands of reported faults. Anybody can report a fault, and unfortunately anybody does; there is a lot of noise mixed in with the signal. One study found 43% of reported faults were enhancement requests, the same underlying fault is reported multiple times (most eventually get marked as duplicate, at the cost of much wasted time) and …

Fault tracking systems don’t always contain all known faults. One study found that the really important faults are handled via email discussion lists, i.e., they are important enough to require involving people directly.

Other problems with fault data include: biased reported of problems, reported problem caused by a fault in a third-party library, and reported problem being intermittent or not reproducible.

Data cleaning is the essential first step that many of those who analyze fault data fail to perform.

The data not used

Users cause faults, i.e., if nobody ever used the software, no faults would be reported. This statement is as accurate as saying: “Source code causes faults”.

Reported faults are the result of software being used with a set of inputs that causes the execution of some sequence of tokens in the source code to have an effect that was not intended.

The number and kind of reported faults in a program depends on the variety of the input and the number of faults in the code.

Most fault related studies do not include any user related usage data in their analysis (the few that do really stand out from the crowd), which can lead to very wrong conclusions being drawn.

User usage data is very hard to obtain, but without it many kinds of evidence-based fault analysis are doomed to fail (giving completely misleading answers).

The shadow of the input distribution

Derek Jones from The Shape of Code

Two things need to occur for a user to experience a fault in a program:

  • a fault has to exist in the code,
  • the user has to provide input that causes program execution to include the faulty code in a way that exhibits the incorrect behavior.

Data on the distribution of user input values is extremely rare, and we are left having to look for the shadows that the input distribution creates.

Csmith is a well-known tool for generating random C source code. I spotted an interesting plot in a compiler fuzzing paper and Yang Chen kindly sent me a copy of the data. In compiler fuzzing, source code is automatically generated and fed to the compiler, various techniques are used to figure out when the compiler gets things wrong.

The plot below is a count of the number of times each fault in gcc has been triggered (code+data). Multiple occurrences of the same fault are experienced because the necessary input values occur multiple times in the generated source code (usually in different files).

Duplicate fault counts, plus fitted regression

The green line is a fitted regression model, it’s a bi-exponential, i.e., the sum of two exponentials (the straight lines in red and blue).

The obvious explanation for this bi-exponential behavior (explanations invented after seeing the data can have the flavor of just-so stories, which is patently not true here :-) is that one exponential is driven by the presence of faults in the code and the other exponential is driven by the way in which Csmith meanders over the possible C source.

So, which exponential is generated by the faults and which by Csmith? I’m still trying to figure this out; suggestions welcome, along with alternative explanations.

Is the same pattern seen in duplicates of user reported faults? It does in the small amount of data I have; more data welcome.