Further Still On A Clockwork Contagion – student

student from thus spake a.k.

My fellow students and I have spent the past several months attempting to build a mathematical model of the spread of disease, our interest in the subject having been piqued whilst we were confined to our halls of residence during the epidemic that beset us upon the dawn of the year. Having commenced with the assumption that those who became infected would be infectious immediately and in perpetuity we refined our model by adding a non-infectious period of incubation and a finite period of illness, after which sufferers should recover with consequent immunity and absence of infectiousness.
A fundamental weakness in our model that we have lately sought to address is the presumption that individuals might initiate contact with other members of the population entirely by chance when it is far more likely that they should interact with those in their immediate vicinity. It is upon our first attempt at correcting this deficiency that I should now like to report.

Further On A Clockwork Contagion – student

student from thus spake a.k.

When last we spoke, I told you of my fellow students' and my first attempt at employing Professor B------'s wondrous computational engine to investigate the statistical properties of the spread of disease; a subject that we had become most curious about whilst confined to our quarters during the epidemic earlier this year. You will no doubt recall that our model assumed that once someone became infected their infectiousness would persist indefinitely, which is quite contrary to the nature of the outbreak. We have since added incubation, recovery and immunity and it is upon these refinements that I shall now report.

On A Clockwork Contagion – student

student from thus spake a.k.

During the recent epidemic, my fellow students and I had plenty of time upon our hands due to the closure of the taverns, theatres and gambling houses at which we would typically while away our evenings and the Dean's subsequent edict restricting us to halls. We naturally set to thinking upon the nature of the disease's transmission and, once the Dean relaxed our confinement, we returned to our college determined to employ Professor B------'s incredible mathematical machine to investigate the probabilistic nature of contagion.

Finally On A Very Cellular Process – student

student from thus spake a.k.

Over the course of the year my fellow students and I have been utilising our free time to explore the behaviour of cellular automata, which are mechanistic processes that crudely approximate the lives and deaths of unicellular creatures such as amoebas. Specifically, they are comprised of unending lines of boxes, some of which contain cells that are destined to live, dive and reproduce according to the occupancy of their neighbours.
Most recently we have seen how we can categorise automata by the manner in which their populations evolve from a primordial state of each box having equal chances of containing or not containing a cell, be they uniform, constant, cyclical, migratory, random or strange. It is the latter of these, which contain arrangements of cells that interact with each other in complicated fashions, that has lately consumed our attention and I shall now report upon our findings.

Further Still On A Very Cellular Process – student

student from thus spake a.k.

My fellow students and I have lately been spending our spare time experimenting with cellular automata, which are simple mathematical models of single celled creatures such as amoebas, governing their survival and reproduction from one generation to the next according to the population of their neighbourhoods. In particular, we have been considering an infinite line of boxes, some of which contain living cells, together with rules that specify whether or not a box will be populated in the next generation according to its, its left hand neighbour's and its right hand neighbour's contents in the current generation.
We have found that for many such automata we can figure the contents of the boxes in any generation that evolved from a single cell directly, in a few cases from the oddness or evenness of elements in the rows of Pascal's triangle and the related trinomial triangle, and in several others from the digits in terms of sequences of binary fractions.
We have since turned our attention to the evolution of generations from multiple cells rather then one; specifically, from an initial generation in which each box has an even chance of containing a cell or not.

Further On A Very Cellular Process – student

student from thus spake a.k.

You will no doubt recall my telling you of my fellow students' and my latest pastime of employing Professor B------'s Experimental Clockwork Mathematical Apparatus to explore the behaviours of cellular automata, which may be thought of as simplistic mathematical simulacra of animalcules such as amoebas.
Specifically, if we put together an infinite line of imaginary boxes, some of which are empty and some of which contain living cells, then we can define a set of rules to determine whether or not a box will contain a cell in the next generation depending upon its own, its left and its right neighbours contents in the current one.

On A Very Cellular Process – student

student from thus spake a.k.

Recently my fellow students and I have been spending our free time using Professor B------'s remarkable calculating engine to experiment with cellular automata, being mathematical contrivances that might be thought of as crude models of the lives of those most humble of creatures; amoebas. In their simplest form they are unending lines of boxes, some of which contain a living cell that at each generation will live, die or reproduce according to the contents of its neighbouring boxes. For example, we might say that each cell divides and its two offspring migrate to the left and right, dying if they encounter another cell's progeny.

Finally On An Ethereal Orrery – student

student from thus spake a.k.

Over the course of the year, my fellow students and I have been experimenting with an ethereal orrery which models the motion of heavenly bodies using nought but Sir N-----'s laws of gravitation and motion. Whilst the consequences of those laws are not generally subject to solution by mathematical reckoning, we were able to approximate them with a scheme that admitted errors of the order of the sixth power of the steps in time by which we advanced the positions of those bodies.
We have thus far employed it to model the solar system itself, uniformly distributed bodies of matter and the accretion of bodies that are close to Earth's orbit about the Sun. Whilst we were most satisfied by its behaviour, I should now like to report upon an altogether more surprising consequence of its engine's action.

Further Still On An Ethereal Orrery – student

student from thus spake a.k.

Recently, my fellow students and I constructed a mathematical orrery which modelled the motion of heavenly bodies employing Sir N-----'s laws of gravitation and motion, rather than clockwork, as its engine. Those laws state that bodies are attracted toward each other with a force proportional to the product of their masses divided by the square of the distance between them, that a body will remain at rest or in constant motion unless a force acts upon it, that if a force acts upon it then it will be accelerated in the direction of that force at a rate proportional to its strength divided by its mass and that, if so, it will reciprocate with an opposing force of equal strength.
Its operation was most satisfactory, which set us to wondering whether we might use its engine to investigate the motions of entirely hypothetical arrangements of heavenly bodies and I should now like to report upon our progress in doing so.

Further On An Ethereal Orrery – student

student from thus spake a.k.

Last time we met we spoke of my fellow students' and my interest in constructing a model of the motion of heavenly bodies using mathematical formulae in the place of brass. In particular we have sought to do so from first principals using Sir N-----'s law of universal gravitation, which states that the force attracting two bodies is proportional to the product of their masses divided by the square of the distance between them, and his laws of motion, which state that a body will remain at rest or in constant motion unless a force acts upon it, that it will be accelerated in the direction of that force at a rate proportional to its magnitude divided the body's mass and that a force acting upon it will be met with an equal force in the opposite direction.
Whilst Sir N----- showed that a pair of bodies traversed conic sections under gravity, being those curves that arise from the intersection of planes with cones, the general case of several bodies has proved utterly resistant to mathematical reckoning. We must therefore approximate the equations of motion and I shall now report on our first attempt at doing so.