Further Still On A Very Cellular Process – student

student from thus spake a.k.

My fellow students and I have lately been spending our spare time experimenting with cellular automata, which are simple mathematical models of single celled creatures such as amoebas, governing their survival and reproduction from one generation to the next according to the population of their neighbourhoods. In particular, we have been considering an infinite line of boxes, some of which contain living cells, together with rules that specify whether or not a box will be populated in the next generation according to its, its left hand neighbour's and its right hand neighbour's contents in the current generation.
We have found that for many such automata we can figure the contents of the boxes in any generation that evolved from a single cell directly, in a few cases from the oddness or evenness of elements in the rows of Pascal's triangle and the related trinomial triangle, and in several others from the digits in terms of sequences of binary fractions.
We have since turned our attention to the evolution of generations from multiple cells rather then one; specifically, from an initial generation in which each box has an even chance of containing a cell or not.

Further On A Very Cellular Process – student

student from thus spake a.k.

You will no doubt recall my telling you of my fellow students' and my latest pastime of employing Professor B------'s Experimental Clockwork Mathematical Apparatus to explore the behaviours of cellular automata, which may be thought of as simplistic mathematical simulacra of animalcules such as amoebas.
Specifically, if we put together an infinite line of imaginary boxes, some of which are empty and some of which contain living cells, then we can define a set of rules to determine whether or not a box will contain a cell in the next generation depending upon its own, its left and its right neighbours contents in the current one.

On A Very Cellular Process – student

student from thus spake a.k.

Recently my fellow students and I have been spending our free time using Professor B------'s remarkable calculating engine to experiment with cellular automata, being mathematical contrivances that might be thought of as crude models of the lives of those most humble of creatures; amoebas. In their simplest form they are unending lines of boxes, some of which contain a living cell that at each generation will live, die or reproduce according to the contents of its neighbouring boxes. For example, we might say that each cell divides and its two offspring migrate to the left and right, dying if they encounter another cell's progeny.

Finally On An Ethereal Orrery – student

student from thus spake a.k.

Over the course of the year, my fellow students and I have been experimenting with an ethereal orrery which models the motion of heavenly bodies using nought but Sir N-----'s laws of gravitation and motion. Whilst the consequences of those laws are not generally subject to solution by mathematical reckoning, we were able to approximate them with a scheme that admitted errors of the order of the sixth power of the steps in time by which we advanced the positions of those bodies.
We have thus far employed it to model the solar system itself, uniformly distributed bodies of matter and the accretion of bodies that are close to Earth's orbit about the Sun. Whilst we were most satisfied by its behaviour, I should now like to report upon an altogether more surprising consequence of its engine's action.

Further Still On An Ethereal Orrery – student

student from thus spake a.k.

Recently, my fellow students and I constructed a mathematical orrery which modelled the motion of heavenly bodies employing Sir N-----'s laws of gravitation and motion, rather than clockwork, as its engine. Those laws state that bodies are attracted toward each other with a force proportional to the product of their masses divided by the square of the distance between them, that a body will remain at rest or in constant motion unless a force acts upon it, that if a force acts upon it then it will be accelerated in the direction of that force at a rate proportional to its strength divided by its mass and that, if so, it will reciprocate with an opposing force of equal strength.
Its operation was most satisfactory, which set us to wondering whether we might use its engine to investigate the motions of entirely hypothetical arrangements of heavenly bodies and I should now like to report upon our progress in doing so.

Further On An Ethereal Orrery – student

student from thus spake a.k.

Last time we met we spoke of my fellow students' and my interest in constructing a model of the motion of heavenly bodies using mathematical formulae in the place of brass. In particular we have sought to do so from first principals using Sir N-----'s law of universal gravitation, which states that the force attracting two bodies is proportional to the product of their masses divided by the square of the distance between them, and his laws of motion, which state that a body will remain at rest or in constant motion unless a force acts upon it, that it will be accelerated in the direction of that force at a rate proportional to its magnitude divided the body's mass and that a force acting upon it will be met with an equal force in the opposite direction.
Whilst Sir N----- showed that a pair of bodies traversed conic sections under gravity, being those curves that arise from the intersection of planes with cones, the general case of several bodies has proved utterly resistant to mathematical reckoning. We must therefore approximate the equations of motion and I shall now report on our first attempt at doing so.

On An Ethereal Orrery – student

student from thus spake a.k.

My fellow students and I have lately been wondering whether we might be able to employ Professor B------'s Experimental Clockwork Mathematical Apparatus to fashion an ethereal orrery, making a model of the heavenly bodies with equations rather than brass.
In particular we have been curious as to whether we might construct such a model using nought but Sir N-----'s law of universal gravitation, which posits that those bodies are attracted to one another with a force that is proportional to the product of their masses divided by the square of the distance between them, and laws of motion, which posit that a body will remain at rest or move with constant velocity if no force acts upon it, that if a force acts upon it then it will be accelerated at a rate proportional to that force divided by its mass in the direction of that force and that it in return exerts a force of equal strength in the opposite direction.

Finally On Natural Analogarithms – student

student from thus spake a.k.

Over the course of the year my fellow students and I have spent much of our spare time investigating the properties of the set of infinite dimensional vectors associated with the roots of rational numbers by way of the former's elements being the powers to which the latter's prime factors are raised, which we have dubbed -space.
We proceeded to define functions of such numbers by applying operations of linear algebra to their -space vectors; firstly with their magnitudes and secondly with their inner products. This time, I shall report upon our explorations of the last operation that we have taken into consideration; the products of matrices and vectors.

Further Still On Natural Analogarithms – student

student from thus spake a.k.

For several months now my fellow students and I have been exploring -space, being the set of infinite dimensional vectors whose elements are the powers of the prime factors of the roots of rational numbers, which we chanced upon whilst attempting to define a rational valued logarithmic function for such numbers.
We have seen how we might define functions of roots of rationals employing the magnitude of their associated -space vectors and that the iterative computation of such functions may yield cyclical sequences, although we conspicuously failed to figure a tidy mathematical rule governing their lengths.
The magnitude is not the only operation of linear algebra that we might bring to bear upon such roots, however, and we have lately busied ourselves investigating another.

Further On Natural Analogarithms – student

student from thus spake a.k.

My fellow students and I have of late been thinking upon an equivalence between the roots of rational numbers and an infinite dimensional rational vector space, which we have named -space, that we discovered whilst defining analogues of logarithms that were expressed purely in terms of rationals.
We were particularly intrigued by the possibility of defining functions of such numbers by applying linear algebra operations to their associated vectors, which we began with a brief consideration of that given by their magnitudes. We have subsequently spent some time further exploring its properties and it is upon our findings that I shall now report.