Changes in the shape of code during the twenties?

Derek Jones from The Shape of Code

At the end of 2009 I made two predictions for the next decade; Chinese and Indian developers having a major impact on the shape of code (ok, still waiting for this to happen), and scripting languages playing a significant role (got that one right, but then they were already playing a large role).

Since this blog has just entered its second decade, I will bring the next decade’s predictions forward a year.

I don’t see any new major customer ecosystems appearing. Ecosystems are the drivers of software development, and no new ecosystems has several consequences, including:

  • No major new languages: Creating a language is a vanity endeavor. Vanity project can take off if they are in the right place at the right time. New ecosystems provide opportunities for new languages to become widely used by being in at the start and growing with the ecosystem. There is another opportunity locus; it is fashionable for companies that see themselves as thought-leaders to have their own language, e.g., Google, Apple, and Mozilla. Invent your language at the right time, while working for a thought-leader company and your language could become well-known enough to take-off.

    I don’t see any major new ecosystems appearing and all the likely companies already have their own language.

    Any new language also faces the problem of not having a large collection packages.

  • Software will be more thoroughly tested: When an ecosystem is new, the incentives drive early and frequent releases (to build a customer base); software just has to be good enough. Once a product is established, companies can invest in addressing issues that customers find annoying, like faulty behavior; the incentive change results in more testing.

    There are other forces at work around testing. Companies are experiencing some very expensive faults (testing may be expensive, but not testing may be more expensive) and automatic test generation is becoming commercially usable (i.e., the cost of some kinds of testing is decreasing).

The evolution of widely used languages.

  • I think Fortran and C will have new features added, with relatively little fuss, and will quietly continue to be widely used (to the dismay of the fashionista).
  • There is a strong expectation that C++ and Java should continue to evolve:

    • I expect the ISO C++ work to implode, because there are too many people pulling in too many directions. It makes sense for the gcc and llvm teams to cooperate in taking C++ in a direction that satisfies developers’ needs, rather than the needs of bored consultants. What are Microsoft’s views? They only have their own compiler for strategic reasons (they make little if any profit selling compilers, compilers are an unnecessary drain on management time; who cares what happens to the language).
    • It is going to be interesting watching the impact of Oracle’s move to charging for runtimes. I have no idea what might happen to Java.

In terms of code volume, the future surely has to be scripting languages, and in particular Python, Javascript and PHP. Ten years from now, will there be a widely used, single language? People have been predicting, for many years, that web languages will take over the world; perhaps there will be a sudden switch and I will see that the choice is obvious.

Moore’s law is now dead, which means researchers are going to have to look for completely new techniques for building logic gates. If photonic computers happen, then ternary notation may reappear again (it was used in at least one early Russian computer); I’m not holding my breath for this to occur.

Practical ecosystem books for software engineers

Derek Jones from The Shape of Code

So you have read my (draft) book on evidence-based software engineering and want to learn more about ecosystems. What books do I suggest?

Biologists have been studying ecosystems for a long time, and more recently social scientists have been investigating cultural ecosystems. Many of the books written in these fields are oriented towards solving differential equations and are rather subject specific.

The study of software ecosystems has been something of a niche topic for a long time. Problems for researchers have included gaining access to ecosystems and the seeming proliferation of distinct ecosystems. The state of ecosystem research in software engineering is rudimentary; historians are starting to piece together what has happened.

Most software ecosystems are not even close to being in what might be considered a steady state. Eventually most software will be really old, and this will be considered normal (“Shock Of The Old: Technology and Global History since 1900″ by Edgerton; newness is a marketing ploy to get people to buy stuff). In the meantime, I have concentrated on the study of ecosystems in a state of change.

Understanding ecosystems is about understanding how the interaction of participant’s motivation, evolves the environment in which they operate.

“Modern Principles of Economics” by Cowen and Tabarrok, is a very readable introduction to economics. Economics might be thought of as a study of the consequences of optimizing the motivation of maximizing return on investment. “Principles of Corporate Finance” by Brealey and Myers, focuses on the topic in its title.

“The Control Revolution: Technological and Economic Origins of the Information Society” by Beniger: the ecosystems in which software ecosystems coexist and their motivations.

“Evolutionary dynamics: exploring the equations of life” by Nowak, is a readable mathematical introduction to the subject given in the title.

“Mathematical Models of Social Evolution: A Guide for the Perplexed” by McElreath and Boyd, is another readable mathematical introduction, but focusing on social evolution.

“Social Learning: An Introduction to Mechanisms, Methods, and Models” by Hoppitt and Laland: developers learn from each other and from their own experience. What are the trade-offs for the viability of an ecosystem that preferentially contains people with specific ways of learning?

“Robustness and evolvability in living systems” by Wagner, survival analysis of systems built from components (DNA in this case). Rather specialised.

Books with a connection to technology ecosystems.

“Increasing returns and path dependence in the economy” by Arthur, is now a classic, containing all the basic ideas.

“The red queen among organizations” by Barnett, includes a chapter on computer manufacturers (has promised me data, but busy right now).

“Information Foraging Theory: Adaptive Interaction with Information” by Pirolli, is an application of ecosystem know-how, i.e., how best to find information within a given environment. Rather specialised.

“How Buildings Learn: What Happens After They’re Built” by Brand, yes building are changed just like software and the changes are just as messy and expensive.

Several good books have probably been omitted, because I failed to spot them sitting on the shelf. Suggestions for books covering topics I have missed welcome, or your own preferences.