Memory capacity growth: a major contributor to the success of computers

Derek Jones from The Shape of Code

The growth in memory capacity is the unsung hero of the computer revolution. Intel’s multi-decade annual billion dollar marketing spend has ensured that cpu clock frequency dominates our attention (a lot of people don’t know that memory is available at different frequencies, and this can have a larger impact on performance that cpu frequency).

In many ways memory capacity is more important than clock frequency: a program won’t run unless enough memory is available but people can wait for a slow cpu.

The growth in memory capacity of customer computers changed the structure of the software business.

When memory capacity was limited by a 16-bit address space (i.e., 64k), commercially saleable applications could be created by one or two very capable developers working flat out for a year. There was no point hiring a large team, because the resulting application would be too large to run on a typical customer computer. Very large applications were written, but these were bespoke systems consisting of many small programs that ran one after the other.

Once the memory capacity of a typical customer computer started to regularly increase it became practical, and eventually necessary, to create and sell applications offering ever more functionality. A successful application written by one developer became rarer and rarer.

Microsoft Windows is the poster child application that grew in complexity as computer memory capacity grew. Microsoft’s MS-DOS had lots of potential competitors because it was small (it was created in an era when 64k was a lot of memory). In the 1990s the increasing memory capacity enabled Microsoft to create a moat around their products, by offering an increasingly wide variety of functionality that required a large team of developers to build and then support.

GCC’s rise to dominance was possible for the same reason as Microsoft Windows. In the late 1980s gcc was just another one-man compiler project, others could not make significant contributions because the resulting compiler would not run on a typical developer computer. Once memory capacity took off, it was possible for gcc to grow from the contributions of many, something that other one-man compilers could not do (without hiring lots of developers).

How fast did the memory capacity of computers owned by potential customers grow?

One source of information is the adverts in Byte (the magazine), lots of pdfs are available, and perhaps one day a student with some time will extract the information.

Wikipedia has plenty of articles detailing cpu performance, e.g., Macintosh models by cpu type (a comparison of Macintosh models does include memory capacity). The impact of Intel’s marketing dollars on the perception of computer systems is a PhD thesis waiting to be written.

The SPEC benchmarks have been around since 1988, recording system memory capacity since 1994, and SPEC make their detailed data public :-) Hardware vendors are more likely to submit SPEC results for their high-end systems, than their run-of-the-mill systems. However, if we are looking at rate of growth, rather than absolute memory capacity, the results may be representative of typical customer systems.

The plot below shows memory capacity against date of reported benchmarking (which I assume is close to the date a system first became available). The lines are fitted using quantile regression, with 95% of systems being above the lower line (i.e., these systems all have more memory than those below this line), and 50% are above the upper line (code+data):

Memory reported in systems running the SPEC benchmark on a given date.

The fitted models show the memory capacity doubling every 845 or 825 days. The blue circles are memory that comes installed with various Macintosh systems, at time of launch (memory doubling time is 730 days).

How did applications’ minimum required memory grow over time? I have a patchy data for a smattering of products, extracted from Wikipedia. Some vendors probably required customers to have a fairly beefy machine, while others went for a wider customer base. Data on the memory requirements of the various versions of products launched in the 1990s is very hard to find. Pointers very welcome.

Learning useful stuff from the Ecosystems chapter of my book

Derek Jones from The Shape of Code

What useful, practical things might professional software developers learn from the Ecosystems chapter in my evidence-based software engineering book?

This week I checked the ecosystems chapter; what useful things did I learn (combined with everything I learned during all the other weeks spent working on this chapter)?

A casual reader would conclude that software engineering ecosystems involved lots of topics, with little or no theory connecting them. I had great plans for the connecting theories, but lack of detailed data, time and inspiration means the plans remain in my head (e.g., modelling the interaction between the growth of source code written in a particular language and the number of developers actively using that language).

For managers, the usefulness of this chapter is the strategic perspective it provides. How does what they and others are doing relate to everything else, and what patterns of evolution are to be expected?

Software people like to think that everything about software is unique. Software is unique, but the activities around it follow patterns that have been followed by other unique technologies, e.g., the automobile and jet engines. There is useful stuff to be learned from non-software ecosystems, and the chapter discusses some similarities I have learned about.

There is lots more evidence of the finite lifetime of software related items: lifetime of products, Linux distributions, packages, APIs and software careers.

Some readers might be surprised by the amount of discussion about what is now historical hardware. Software needs hardware to execute it, and the characteristics of the hardware of the day can have a significant impact on the characteristics of the software that gets written. I suspect that most of this discussion will not be that useful to most readers, but it provides some context around why things are the way they are today.

Readers with a wide knowledge of software ecosystems will notice that several major ecosystems barely get a mention. Embedded systems is a huge market, as is Microsoft Windows, and very many professional developers use C++. However, to date the focus of most research has been around Linux and Android (because its use of Java, a language often taught in academia), and languages that have a major package repository. So the ecosystems chapter presents a rather blinkered view of software engineering ecosystems.

What did I learn from this chapter?

Software ecosystems are bigger and more complicated that I had originally thought.

Readers might have a completely different learning experience from reading the ecosystems chapter. What useful things did you learn from the ecosystems chapter?

Ecosystems chapter of “evidence-based software engineering” reworked

Derek Jones from The Shape of Code

The Ecosystems chapter of my evidence-based software engineering book has been reworked (I have given up on the idea that this second pass is also where the polishing happens; polishing still needs to happen, and there might be more material migration between chapters); download here.

I have been reading books on biological ecosystems, and a few on social ecosystems. These contain lots of interesting ideas, but the problem is, software ecosystems are just very different, e.g., replication costs are effectively zero, source code does not replicate itself (and is not self-evolving; evolution happens because people change it), and resources are exchanged rather than flowing (e.g., people make deals, they don’t get eaten for lunch). Lots of caution is needed when applying ecosystem related theories from biology, the underlying assumptions probably don’t hold.

There is a surprising amount of discussion on the computing world as it was many decades ago. This is because ecosystem evolution is path dependent; understanding where we are today requires knowing something about what things were like in the past. Computer memory capacity used to be a big thing (because it was often measured in kilobytes); memory does not get much publicity because the major cpu vendor (Intel) spends a small fortune on telling people that the processor is the most important component inside a computer.

There are a huge variety of software ecosystems, but you would not know this after reading the ecosystems chapter. This is because the work of most researchers has been focused on what used to be called the desktop market, which over the last few years the focus has been shifting to mobile. There is not much software engineering research focusing on embedded systems (a vast market), or supercomputers (a small market, with lots of money), or mainframes (yes, this market is still going strong). As the author of an evidence-based book, I have to go where the data takes me; no data, then I don’t have anything to say.

Empirical research (as it’s known in academia) needs data, and the ‘easy’ to get data is what most researchers use. For instance, researchers analyzing invention and innovation invariably use data on patents granted, because this data is readily available (plus everybody else uses it). For empirical research on software ecosystems, the readily available data are package repositories and the Google/Apple Apps stores (which is what everybody uses).

The major software ecosystems barely mentioned by researchers are the customer ecosystem (the people who pay for everything), the vendors (the companies in the software business) and the developer ecosystem (the people who do the work).

Next, the Projects chapter.

Changes in the shape of code during the twenties?

Derek Jones from The Shape of Code

At the end of 2009 I made two predictions for the next decade; Chinese and Indian developers having a major impact on the shape of code (ok, still waiting for this to happen), and scripting languages playing a significant role (got that one right, but then they were already playing a large role).

Since this blog has just entered its second decade, I will bring the next decade’s predictions forward a year.

I don’t see any new major customer ecosystems appearing. Ecosystems are the drivers of software development, and no new ecosystems has several consequences, including:

  • No major new languages: Creating a language is a vanity endeavor. Vanity project can take off if they are in the right place at the right time. New ecosystems provide opportunities for new languages to become widely used by being in at the start and growing with the ecosystem. There is another opportunity locus; it is fashionable for companies that see themselves as thought-leaders to have their own language, e.g., Google, Apple, and Mozilla. Invent your language at the right time, while working for a thought-leader company and your language could become well-known enough to take-off.

    I don’t see any major new ecosystems appearing and all the likely companies already have their own language.

    Any new language also faces the problem of not having a large collection packages.

  • Software will be more thoroughly tested: When an ecosystem is new, the incentives drive early and frequent releases (to build a customer base); software just has to be good enough. Once a product is established, companies can invest in addressing issues that customers find annoying, like faulty behavior; the incentive change results in more testing.

    There are other forces at work around testing. Companies are experiencing some very expensive faults (testing may be expensive, but not testing may be more expensive) and automatic test generation is becoming commercially usable (i.e., the cost of some kinds of testing is decreasing).

The evolution of widely used languages.

  • I think Fortran and C will have new features added, with relatively little fuss, and will quietly continue to be widely used (to the dismay of the fashionista).
  • There is a strong expectation that C++ and Java should continue to evolve:

    • I expect the ISO C++ work to implode, because there are too many people pulling in too many directions. It makes sense for the gcc and llvm teams to cooperate in taking C++ in a direction that satisfies developers’ needs, rather than the needs of bored consultants. What are Microsoft’s views? They only have their own compiler for strategic reasons (they make little if any profit selling compilers, compilers are an unnecessary drain on management time; who cares what happens to the language).
    • It is going to be interesting watching the impact of Oracle’s move to charging for runtimes. I have no idea what might happen to Java.

In terms of code volume, the future surely has to be scripting languages, and in particular Python, Javascript and PHP. Ten years from now, will there be a widely used, single language? People have been predicting, for many years, that web languages will take over the world; perhaps there will be a sudden switch and I will see that the choice is obvious.

Moore’s law is now dead, which means researchers are going to have to look for completely new techniques for building logic gates. If photonic computers happen, then ternary notation may reappear again (it was used in at least one early Russian computer); I’m not holding my breath for this to occur.

Practical ecosystem books for software engineers

Derek Jones from The Shape of Code

So you have read my (draft) book on evidence-based software engineering and want to learn more about ecosystems. What books do I suggest?

Biologists have been studying ecosystems for a long time, and more recently social scientists have been investigating cultural ecosystems. Many of the books written in these fields are oriented towards solving differential equations and are rather subject specific.

The study of software ecosystems has been something of a niche topic for a long time. Problems for researchers have included gaining access to ecosystems and the seeming proliferation of distinct ecosystems. The state of ecosystem research in software engineering is rudimentary; historians are starting to piece together what has happened.

Most software ecosystems are not even close to being in what might be considered a steady state. Eventually most software will be really old, and this will be considered normal (“Shock Of The Old: Technology and Global History since 1900″ by Edgerton; newness is a marketing ploy to get people to buy stuff). In the meantime, I have concentrated on the study of ecosystems in a state of change.

Understanding ecosystems is about understanding how the interaction of participant’s motivation, evolves the environment in which they operate.

“Modern Principles of Economics” by Cowen and Tabarrok, is a very readable introduction to economics. Economics might be thought of as a study of the consequences of optimizing the motivation of maximizing return on investment. “Principles of Corporate Finance” by Brealey and Myers, focuses on the topic in its title.

“The Control Revolution: Technological and Economic Origins of the Information Society” by Beniger: the ecosystems in which software ecosystems coexist and their motivations.

“Evolutionary dynamics: exploring the equations of life” by Nowak, is a readable mathematical introduction to the subject given in the title.

“Mathematical Models of Social Evolution: A Guide for the Perplexed” by McElreath and Boyd, is another readable mathematical introduction, but focusing on social evolution.

“Social Learning: An Introduction to Mechanisms, Methods, and Models” by Hoppitt and Laland: developers learn from each other and from their own experience. What are the trade-offs for the viability of an ecosystem that preferentially contains people with specific ways of learning?

“Robustness and evolvability in living systems” by Wagner, survival analysis of systems built from components (DNA in this case). Rather specialised.

Books with a connection to technology ecosystems.

“Increasing returns and path dependence in the economy” by Arthur, is now a classic, containing all the basic ideas.

“The red queen among organizations” by Barnett, includes a chapter on computer manufacturers (has promised me data, but busy right now).

“Information Foraging Theory: Adaptive Interaction with Information” by Pirolli, is an application of ecosystem know-how, i.e., how best to find information within a given environment. Rather specialised.

“How Buildings Learn: What Happens After They’re Built” by Brand, yes building are changed just like software and the changes are just as messy and expensive.

Several good books have probably been omitted, because I failed to spot them sitting on the shelf. Suggestions for books covering topics I have missed welcome, or your own preferences.