Researching programming languages

Derek Jones from The Shape of Code

What useful things might be learned from evidence-based research into programming languages?

A common answer is researching how to design a programming language having a collection of desirable characteristics; with desirable characteristics including one or more of: supporting the creation of reliable, maintainable, readable, code, or being easy to learn, or easy to understand, etc.

Building a theory of, say, code readability is an iterative process. A theory is proposed, experiments are run, results are analysed; rinse and repeat until a theory having a good enough match to human behavior is found. One iteration will take many years: once a theory is proposed, an implementation has to be built, developers have to learn it, and spend lots of time using it to enable longer term readability data to be obtained. This iterative process is likely to take many decades.

Running one iteration will require 100+ developers using the language over several years. Why 100+? Lots of subjects are needed to obtain statistically meaningful results, people differ in their characteristics and previous software experience, and some will drop out of the experiment. Just one iteration is going to cost a lot of money.

If researchers do succeed in being funded and eventually discovering some good enough theories, will there be a mass migration of developers to using languages based on the results of the research findings? The huge investment in existing languages (both in terms of existing code and developer know-how) means that to stand any chance of being widely adopted these new language(s) are going to have to deliver a substantial benefit.

I don’t see a high cost multi-decade research project being funded, and based on the performance improvements seen in studies of programming constructs I don’t see the benefits being that great (benefits in use of particular constructs may be large, but I don’t see an overall factor of two improvement).

I think that creating new programming languages will continue to be a popular activity (it is vanity research), and I’m sure that the creators of these languages will continue to claim that their language has some collection of desirable characteristics without any evidence.

What programming research might be useful and practical to do?

One potentially practical and useful question is the lifecycle of programming languages. Where the components of the lifecycle includes developers who can code in the language, source code written in the language, and companies dependent on programs written in the language (who are therefore interested in hiring people fluent in the language).

Many languages come and go without many people noticing, a few become popular for a few years, and a handful continue to be widely used over decades. What are the stages of life for a programming language, what factors have the largest influence on how widely a language is used, and for how long it continues to be used?

Sixty years worth of data is waiting to be collected and collated; enough to keep researchers busy for many years.

The uses of a lifecycle model, that I can thinkk of, all involve the future of a language, e.g., how much of a future does it have and how might it be extended.

Some recent work looking at the rate of adoption of new language features includes: On the adoption, usage and evolution of Kotlin Features on Android development, and Understanding the use of lambda expressions in Java; also see section 7.3.1 of Evidence-based software engineering.