Publishing information on project progress: will it impact delivery?

Derek Jones from The Shape of Code

Numbers for delivery date and cost estimates, for a software project, depend on who you ask (the same is probably true for other kinds of projects). The people actually doing the work are likely to have the most accurate information, but their estimates can still be wildly optimistic. The managers of the people doing the work have to plan (i.e., make worst/best case estimates) and deal with people outside the team (i.e., sell the project to those paying for it); planning requires knowledge of where things are and where they need to be, while selling requires being flexible with numbers.

A few weeks ago I was at a hackathon organized by the people behind the Project Data and Analytics meetup. The organizers (Martin Paver & co.) had obtained some very interesting project related data sets. I worked on the Australian ICT dashboard data.

The Australian ICT dashboard data was courtesy of the Queensland state government, which has a publicly available dashboard listing digital project expenditure; the Victorian state government also has a dashboard listing ICT expenditure. James Smith has been collecting this data on a monthly basis.

What information might meaningfully be extracted from monthly estimates of project delivery dates and costs?

If you were running one of these projects, and had to provide monthly figures, what strategy would you use to select the numbers? Obviously keep quiet about internal changes for as long as possible (today’s reduction can be used to offset a later increase, or vice versa). If the client requests changes which impact date/cost, then obviously update the numbers immediately; the answer to the question about why the numbers changed is that, “we are responding to client requests” (i.e., we would otherwise still be on track to meet the original end-points).

What is the intended purpose of publishing this information? Is it simply a case of the public getting fed up with overruns, with publishing monthly numbers is seen as a solution?

What impact could monthly publication have? Will clients think twice before requesting an enhancement, fearing public push back? Will companies doing the work make more reliable estimates, or work harder?

Project delivery dates/costs change because new functionality/work-to-do is discovered, because the appropriate staff could not be hired and other assorted unknown knowns and unknowns.

Who is looking at this data (apart from half a dozen people at a hackathon on the other side of the world)?

Data on specific projects can only be interpreted in the context of that project. There is some interesting research to be done on the impact of public availability on client and vendor reporting behavior.

Will publication have an impact on performance? One way to get some idea is to run an A/B experiment. Some projects have their data made public, others don’t. Wait a few years, and compare project performance for the two publication regimes.

Statistical techniques not needed to analyze software engineering data

Derek Jones from The Shape of Code

One of the methods I used to try to work out what statistical techniques were likely to be useful to software developers, was to try to apply techniques that were useful in other areas. Of course, applying techniques requires the appropriate data to apply them to.

Extreme value statistics are used to spot patterns in rare events, e.g., frequency of rivers over spilling their banks and causing extensive flooding. I have tried and failed to find any data where Extreme value theory might be applicable. There probably is some such data, somewhere.

The fact that I have spent a lot of time looking for data and failed to find particular kinds of data, suggests that occurrences are rare. If data needing a particular kind of analysis technique is rare, there is no point including a discussion of the technique in a book aimed at providing general coverage of material.

I have spent some time looking for data drawn from a zero-inflated Poisson distribution. Readers are unlikely to have ever heard of this and might well ask why I would be interested in such an obscure distribution. Well, zero-truncated Poisson distributions crop up regularly (the Poisson distribution applies to count data that starts at zero, when count data starts at one the zeroes are said to be truncated and the Poisson distribution has to be offset to adjust for this). There is a certain symmetry to zero-truncated/inflated (although the mathematics involved is completely different), plus there is probably a sunk cost effect (i.e., I have spent time learning about them, I am going to find the data).

I spotted a plot in a paper investigating record data structure usage in Racket, that looked like it might be well fitted by a zero-inflated Poisson distribution. Tobias Pape kindly sent me the data (number of record data structures having a given size), which I then failed miserably to fit to any kind of Poisson related distribution; see plot below; data points along red line through the plus symbols (code+data):

Number of Racket record data structures having a given size.

I can only imagine what the authors thought of my reason for wanting the data (I made data requests to a few other researchers for similar reasons; and again I failed to fit the desired distribution).

I had expected to make more use of time series analysis; but, it has just not been that applicable.

Machine learning is useful for publishing papers, but understanding what is going on is the subject of my book, not building black boxes to make predictions.

It is possible that researchers are not publishing work relating to data that requires statistical techniques I have not used, because they don’t know how to analyze the data or the data is too hard to collect. Inability to use the correct techniques to analyze data is rarely a reason for not publishing a paper. Data being too hard to collect is very believable, as-is the data rarely occurring in software engineering related work.

There are statistical tests I have intentionally ignored, the Mann–Whitney U test (aka, the Wilcoxon rank-sum test) and the t-test probably being the most well-known. These tests became obsolete once computers became generally available. If you are ever stuck on a desert island without a computer, these are the statistical tests you will have to use.

Major players in evidence-based software engineering

Derek Jones from The Shape of Code

Who are the major players in evidence-based software engineering?

How might ‘majorness’ of players be calculated? For me, the amount of interesting software engineering data they have made publicly available is the crucial factor. Any data published in a book, paper or report is enough to be considered interesting. How interesting is data published on a web page? This is a tough question, let’s dodge the question to start with, and consider the decades before the start of 2000.

In the academic world performance is based on number of papers published, the impact factor of where they were published and number of citations of those papers. This skews the results in favor of those with lots of students (who tack their advisor’s name on the end of papers published) and those who are good at marketing.

Historians of computing have primarily focused on the evolution of hardware and are slowly moving to discuss software (perhaps because microcomputers have wiped out nearly every hardware vendor). So we will have to wait perhaps a decade or two for tentative/definitive historian answer.

The 1950s

Computers and Automation is a criminally underused resource (a couple of PhDs worth of primary data here). A lot of the data is hardware related, but software gets a lot more than a passing mention.

The US military published lots of hardware data, but software does not get mentioned much.

The 1960s

Computers and Automation are still publishing.

The US military still publishing data; again mostly hardware related.

Datamation, a weekly news magazine, published a lot of substantial material on the software and hardware ecosystems as they evolved.

Kenneth Knight’s analysis of computer performance is an example of the kind of data analysis that many people undertook for hardware, which was rarely done for software.

The 1970s

The US military are still leading the way; we are in the time of Rome. Air Force officers studying for a Master’s degree publish more software engineering data than all academics combined over this and the next two decades.

“Data processing technology and economics” by Montgomery Phister is 720 A4 pages packed with graphs and tables of numbers. Despite citing earlier sources, this has become the primary source for a lot of subsequent researchers; this is understandable in a pre-internet age. Now we have Bitsavers and the Internet Archive, and the cited primary source can be downloaded.

NASA is surprisingly low volume.

The 1980s

Rome falls (i.e., the work gets outsourced to a university) and the false prophets (i.e., academics doing non-evidence based work) multiply and prosper. There are hushed references to trouble makers performing unclean acts experiments in the wilderness.

A few people working in the wilderness, meaning that the quantity of data being produced drops by at least an order of magnitude.

The 1990s

Enough time has passed for people to be able to refer to the wisdom of the ancients.

There are still people in the wilderness howling at the moon, and performing unclean acts experiments.

The 2000s

Repositories of Open source and bug reports grow and prosper. Evidence-based software engineering research starts to become mainstream.

There are now groups of people doing software engineering research.

What about individuals as major players? A vaguely scientific way of rating individual impact, on evidence-based software engineering, is to count the number of papers they have published, that are cited by a book claiming to discuss all the important/interesting publicly available software engineering data (code+data).

The 1,521 papers cited, by such a book, had 3,716 authors, of which 3,095 were different. The authors who appeared most often are listed below (count on the right, and yes, at number 2 is a theoretician; I have cited myself nine times, but two of those are to web sites hosting data).

Magne Jorgensen 17
Anne Chao 11
Dag I. K. Sjoberg 10
Massimiliano Di Penta 10
Ahmed E. Hassan 8
Christian Bird 8
Stanislas Dehaene 8
Giuliano Antoniol 7
Thomas Zimmermann 7
Alexander Serebrenik 6
Dror G. Feitelson 6
Gregorio Robles 6
Krzysztof Czarnecki 6
Lutz Prechelt 6
Victor R. Basili 6

The number of authors/papers follows the usual pattern of many people writing one paper.

Number of evidence-based papers written by an author

Who might I have missed? The business school researchers don’t get a mention because their data is often covered by a confidentiality agreement. The machine learning crowd are just embarrassing.

Suggestions for major players welcome.

Business school research in software engineering is some of the best

Derek Jones from The Shape of Code

There is a group of software engineering researchers that don’t feature as often as I would like in my evidence-based software engineering book; academics working in business schools.

Business school academics have written some of the best papers I have read on software engineering; the catch is that the data they use is confidential. For somebody writing a book that only discusses a topic if there is data publicly available, this is a problem.

These business school researchers show that it is possible for academics to obtain ‘interesting’ software engineering data from industry. My experience with talking to researchers in computing departments is that most are too involved in their own algorithmic bubble to want to talk to anybody else.

One big difference between the data analysis papers written by academics in computing departments and business schools, is statistical sophistication. Computing papers are still using stone-age pre-computer age techniques, the business papers use a wide range of sophisticated techniques (sometimes cutting edge).

There is one aspect of software engineering papers written by business school researchers that grates with me, many of the authors obviously don’t understand software engineering from a developer’s perspective; well, obviously, they are business oriented people.

The person who has done the largest amount of interesting software engineering research, whose work I don’t (yet; I will find a way) discuss, is Chris Kemerer; a researcher who has a long list of empirical papers going back to the early 1990s, and rarely gets cited by papers by people in computing departments (I am the only person I know, who limits themself to papers where the data is publicly available).