Modeling visual studio C++ compile times

Derek Jones from The Shape of Code

Last week I spotted an interesting article on the compile-time performance of C++ compilers running under Microsoft Windows. The author had obviously put a lot of work into gathering the data, and had taken care to have multiple runs to reduce the impact of random effects (128 runs to be exact); but, as if often the case, the analysis of the data was lackluster. I posted a comment asking for the data, and a link was posted the next day :-)

The compilers benchmarked were: Visual Studio 2015, Visual Studio 2017 and clang 7.0.1; the compilers were configured to target: C++20, C++17, C++14, C++11, C++03, or C++98. The source code used was 100 system headers.

If we are interested in understanding the contribution of each component to overall compile-time, the obvious fist regression model to build is:

compile_time = header_x+compiler_y+language_z

where: header_x are the different headers, compiler_y the different compilers and language_z the different target languages. There might be some interaction between variables, so something more complicated was tried first; the final fitted model was (code+data):

compile_time = k+header_x+compiler_y+language_z+compiler_y*language_z

where k is a constant (the Intercept in R’s summary output). The following is a list of normalised numbers to plug into the equation (clang is the default compiler and C++03 the default language, and so do not appear in the list, the : symbol represents the multiplication; only a few of the 100 headers are listed, details are available):

                             Estimate Std. Error  t value Pr(>|t|)    
               (Intercept)                  headerany 
               1.000000000                0.051100398 
               headerarray             headerassert.h 
               0.522336397               -0.654056185 
...
            headerwctype.h            headerwindows.h 
              -0.648095154                1.304270250 
              compilerVS15               compilerVS17 
              -0.185795534               -0.114590143 
             languagec++11              languagec++14 
               0.032930014                0.156363433 
             languagec++17              languagec++20 
               0.192301727                0.184274629 
             languagec++98 compilerVS15:languagec++11 
               0.001149643               -0.058735591 
compilerVS17:languagec++11 compilerVS15:languagec++14 
              -0.038582437               -0.183708714 
compilerVS17:languagec++14 compilerVS15:languagec++17 
              -0.164031495                         NA 
compilerVS17:languagec++17 compilerVS15:languagec++20 
              -0.181591418                         NA 
compilerVS17:languagec++20 compilerVS15:languagec++98 
              -0.193587045                0.062414667 
compilerVS17:languagec++98 
               0.014558295 

As an example, the (normalised) time to compile wchar.h using VS15 with languagec++11 is:
1-0.514807638-0.183862162+0.033951731-0.059720131

Each component adds/substracts to/from the normalised mean.

Building this model didn’t take long. While waiting for the kettle to boil, I suddenly realised that an additive model was probably inappropriate for this problem; oops. Surely the contribution of each component was multiplicative, i.e., components have a percentage impact to performance.

A quick change to the form of the fitted model:

log(compile_time) = k+header_x+compiler_y+language_z+compiler_y*language_z

Taking the exponential of both side, the fitted equation becomes:

compile_time = e^{k}e^{header_x}e^{compiler_y}e^{language_z}e^{compiler_y*language_z}

The numbers, after taking the exponent, are:

               (Intercept)                  headerany 
              9.724619e+08               1.051756e+00 
...
            headerwctype.h            headerwindows.h 
              3.138361e-01               2.288970e+00 
              compilerVS15               compilerVS17 
              7.286951e-01               7.772886e-01 
             languagec++11              languagec++14 
              1.011743e+00               1.049049e+00 
             languagec++17              languagec++20 
              1.067557e+00               1.056677e+00 
             languagec++98 compilerVS15:languagec++11 
              1.003249e+00               9.735327e-01 
compilerVS17:languagec++11 compilerVS15:languagec++14 
              9.880285e-01               9.351416e-01 
compilerVS17:languagec++14 compilerVS15:languagec++17 
              9.501834e-01                         NA 
compilerVS17:languagec++17 compilerVS15:languagec++20 
              9.480678e-01                         NA 
compilerVS17:languagec++20 compilerVS15:languagec++98 
              9.402461e-01               1.058305e+00 
compilerVS17:languagec++98 
              1.001267e+00 

Taking the same example as above: wchar.h using VS15 with c++11. The compile-time (in cpu clock cycles) is:
9.724619e+08*3.138361e-01*7.286951e-01*1.011743e+00*9.735327e-01

Now each component causes a percentage change in the (mean) base value.

Both of these model explain over 90% of the variance in the data, but this is hardly surprising given they include so much detail.

In reality compile-time is driven by some combination of additive and multiplicative factors. Building a combined additive and multiplicative model is going to be like wrestling an octopus, and is left as an exercise for the reader :-)

Given a choice between these two models, I think the multiplicative model is probably closest to reality.

Building a regression model is easy and informative

Derek Jones from The Shape of Code

Running an experiment is very time-consuming. I am always surprised that people put so much effort into gathering the data and then spend so little effort analyzing it.

The Computer Language Benchmarks Game looks like a fun benchmark; it compares the performance of 27 languages using various toy benchmarks (they could not be said to be representative of real programs). And, yes, lots of boxplots and tables of numbers; great eye-candy, but what do they all mean?

The authors, like good experimentalists, make all their data available. So, what analysis should they have done?

A regression model is the obvious choice and the following three lines of R (four lines if you could the blank line) build one, providing lots of interesting performance information:

cl=read.csv("Computer-Language_u64q.csv.bz2", as.is=TRUE)

cl_mod=glm(log(cpu.s.) ~ name+lang, data=cl)
summary(cl_mod)

The following is a cut down version of the output from the call to summary, which summarizes the model built by the call to glm.

                    Estimate Std. Error t value Pr(>|t|)    
(Intercept)         1.299246   0.176825   7.348 2.28e-13 ***
namechameneosredux  0.499162   0.149960   3.329 0.000878 ***
namefannkuchredux   1.407449   0.111391  12.635  < 2e-16 ***
namefasta           0.002456   0.106468   0.023 0.981595    
namemeteor         -2.083929   0.150525 -13.844  < 2e-16 ***

langclojure         1.209892   0.208456   5.804 6.79e-09 ***
langcsharpcore      0.524843   0.185627   2.827 0.004708 ** 
langdart            1.039288   0.248837   4.177 3.00e-05 ***
langgcc            -0.297268   0.187818  -1.583 0.113531 
langocaml          -0.892398   0.232203  -3.843 0.000123 *** 
  
    Null deviance: 29610  on 6283  degrees of freedom
Residual deviance: 22120  on 6238  degrees of freedom

What do all these numbers mean?

We start with glm's first argument, which is a specification of the regression model we are trying to fit: log(cpu.s.) ~ name+lang

cpu.s. is cpu time, name is the name of the program and lang is the language. I found these by looking at the column names in the data file. There are other columns in the data, but I am running in quick & simple mode. As a first stab, I though cpu time would depend on the program and language. Why take the log of the cpu time? Well, the model fitted using cpu time was very poor; the values range over several orders of magnitude and logarithms are a way of compressing this range (and the fitted model was much better).

The model fitted is:

cpu.s. = e^{Intercept+name+prog}, or cpu.s. = e^{Intercept}*e^{name}*e^{prog}

Plugging in some numbers, to predict the cpu time used by say the program chameneosredux written in the language clojure, we get: cpu.s. = e^{1.3}*e^{0.5}*e^{1.2}=20.1 (values taken from the first column of numbers above).

This model assumes there is no interaction between program and language. In practice some languages might perform better/worse on some programs. Changing the first argument of glm to: log(cpu.s.) ~ name*lang, adds an interaction term, which does produce a better fitting model (but it's too complicated for a short blog post; another option is to build a mixed-model by using lmer from the lme4 package).

We can compare the relative cpu time used by different languages. The multiplication factor for clojure is e^{1.2}=3.3, while for ocaml it is e^{-0.9}=0.4. So clojure consumes 8.2 times as much cpu time as ocaml.

How accurate are these values, from the fitted regression model?

The second column of numbers in the summary output lists the estimated standard deviation of the values in the first column. So the clojure value is actually e^{1.2 pm (0.2*1.96)}, i.e., between 2.2 and 4.9 (the multiplication by 1.96 is used to give a 95% confidence interval); the ocaml values are e^{-0.9 pm (0.2*1.96)}, between 0.3 and 0.6.

The fourth column of numbers is the p-value for the fitted parameter. A value of lower than 0.05 is a common criteria, so there are question marks over the fit for the program fasta and language gcc. In fact many of the compiled languages have high p-values, perhaps they ran so fast that a large percentage of start-up/close-down time got included in their numbers. Something for the people running the benchmark to investigate.

Isn't it easy to get interesting numbers by building a regression model? It took me 10 minutes, ok I spend a lot of time fitting models. After spending many hours/days gathering data, spending a little more time learning to build simple regression models is well worth the effort.