Software Process Dynamics

Rob Smallshire from Good With Computers

At the Software Architect 2015 conference in London I presented "What if? Supporting decisions with software dynamics simulations". [1] This talk introduces the idea of performing numerical simulations of software development teams and the products they build. The value in such simulations is to inform policy decisions and guide deliberate perturbations to the software development process, such as whether and when to add or remove personnel from a project. Simulations should not be used to make hard predications about, for example, when a particular project will be finished.

[1]Slides

Event-Sourced Domain Models in Python at PyCon UK

Rob Smallshire from Good With Computers

At PyCon UK 2015 I led a very well attended workshop with the goal of introducing Python developers to the tried-and-tested techniques and patterns of Domain Driven Design (DDD), in particular when used as part of an event-sourced architecture.

The two-and-a-half hour workshop was comprised of excerpts from our training course DDD Patterns in Python. Although the workshop material was heavily edited and compressed from the course – I'm confident that the majority of attendees grasped the main principles.

Several attendees have since asked for the introductory slides, which preceded the exercises. Here they are:

Sixty North training materials are for individual use. For training in a commercial setting please contact us to book a training course or obtain a license for the materials.

Event Processing with Transducers

Rob Smallshire from Good With Computers

In the previous article in this series on transducers we looked at lazily evaluating transducers. This time we'll look not at pulling output through a transducer chain from downstream, but at pushing input items into the chain from upstream.

All of the uses of transducers we've demonstrated in Python so far are probably better handled by existing and well established Python programming techniques, such as generator expressions and generator functions. At this point in the series, we move definitely beyond that into new territory where transducers bring completely new capabilities to Python.

One the key selling points of transducers is that they abstract the essence of a transformation away from the details of the data series that is being transformed. We'll show this in Python by using transducers to transform a series of events modelled using Python coroutines.

Coroutines in Python

Coroutines in Python are little-used, and their workings are not widely known, so their implementation bears repeating here. If you're familiar with the notion of coroutines in general, and the specifics of how they're implemented in Python, you can skim over this section.

Coroutines are like generator functions insofar as they are resumable functions. In fact, coroutines in Python are generator functions which use yield as an expression rather than a statement. What this means in practice is that generator function objects sport a send() method which allows the client of the generator function to transmit information to a running generator and for the generator to receive this data as the value of the yield expression. As usual, an example will serve to make things clearer.

We'll start by defining a generator function which enters an infinite loop, waits at the yield expression for a value to be received, and then prints this value to the console.

>>> def event_receiver():
...     while True:
...         message = (yield)
...         print("Message:", message)
...
>>>

We create a generator object just the same as we would with any other generator:

>>> r = event_receiver()
>>> r

Now we'll try to send it a message, using the send() method of the generator object:

>>> r.send("message")
Traceback (most recent call last):
  File "", line 1, in
TypeError: can't send non-None value to a just-started generator
>>>

This actually fails, because the generator code has not yet been executed at all. We need to prime the pump, so to speak, by advancing execution to the first occurrence of yield. We can do this by passing the generator to the next() built-in:

>>> next(r)

We'll fix this pump-priming annoyance of generator based coroutines shortly.

Now we can send messages:

>>> r.send("message")
Message: message
>>> r.send("another message")
Message: another message

When we're done, we terminate the coroutine by calling the close() method. (This actually raises a GeneratorExit exception at the site of the yield expression, which allows control flow to exit the otherwise infinite loop; this special exception is intercepted by the Python runtime system, so it isn't seen by us at the console).

>>> r.close()
>>>

Any further attempts to send() messages into the generator function cause StopIteration to be raised. This, of course, is the normal means of indicating that a generator is exhausted:

>>> r.send("message")
Traceback (most recent call last):
  File "", line 1, in
StopIteration
>>>

Priming generator-based coroutines

Now to address the awkwardness of having to prime coroutine generator functions by initially passing them to next(). We can improve this with a function decorator which creates the generator object and calls next on our behalf. We'll call the decorator @coroutine:

def coroutine(func):
    def start(*args, **kwargs):
        g = func(*args, **kwargs)
        next(g)
        return g
    return start

We'll use our new decorator to assist in defining a slightly more sophisticated coroutine for printing, called rprint():

import sys

@coroutine
def rprint(sep='\n', end=''):
    """A coroutine sink which prints received items to stdout

    Args:
      sep: Optional separator to be printed between received items.
      end: Optional terminator to be printed after the last item.
    """
    try:
        first_item = (yield)
        sys.stdout.write(str(first_item))
        sys.stdout.flush()
        while True:
            item = (yield)
            sys.stdout.write(sep)
            sys.stdout.write(str((item)))
            sys.stdout.flush()
    except GeneratorExit:
        sys.stdout.write(end)
        sys.stdout.flush()

In this implementation, we intercept GeneratorExit explicitly to give us the opportunity to print a terminator. We also regularly flush the stream so we get immediate feedback for our following experiments.

Event sources

The opposite of a sink is a source. Until now, we've been sourcing 'events' ourself by sending them from the REPL, but to make this a little more interesting, we'll cook up a function – just a plain old function, not a generator – which takes values from an iterable series and intermittently sends them, after a delay, to anything with a send() method such as our coroutine generators. For fun, the random delay has a so-called Poisson distribution which mimics a radioactive source; imagine a device with a geiger counter which sends the next item from an iterable series each time an atom decays:

def poisson_source(rate, iterable, target):
    """Send events at random times with uniform probability.

    Args:
      rate: The average number of events to send per second.

      iterable: A series of items which will be sent to the target
          one by one.

      target: The target coroutine or sink.

    Returns:
        The completed value, or None if iterable was exhausted
        and the target was closed.
    """
    for item in iterable:
        duration = random.expovariate(rate)
        sleep(duration)
        try:
            target.send(item)
        except StopIteration as e:
            return e.value
    target.close()
    return None

When either the iterable series is exhausted or the target signals it has terminated (by raising StopIteration) we call close() on the target. Note that by supplying an infinite iterable series we could make the source send events forever.

Let's hook our source and sink together at the REPL:

>>> printer = rprint(sep=', ', end='\nDONE!\n')
>>> count_to_nine = range(10)
>>> poisson_source(rate=0.5, iterable=count_to_nine, target=printer)
0, 1, 2, 3, 4, 5, 6, 7, 8, 9
DONE!
>>>

Combined event sources and event sinks

Of course, we can build functions which act as both sinks and sources, transforming the messages they receive in some way and forwarding the processed results onwards to another sink. Here's a combined source and sink function, which simply doubles the values it receives:

@coroutine
def doubler(target):
    while True:
        item = (yield)
        doubled_item = item * 2
        try:
            target.send(doubled_item)
        except StopIteration as e:
            return e.value

To use, doubler() we chain the components of the pipeline together

>>> printer = rprint(sep=', ', end='\nDONE!\n')
>>> count_to_nine = range(10)
>>> poisson_source(rate=0.5,
...                iterable=count_to_nine,
...                target=doubler(target=printer))
0, 2, 4, 6, 8, 10, 12, 14, 16, 18
DONE!

From doubler() it's but a short hop to a more general mapper() which accepts an arbitrary transforming function:

@coroutine
def mapper(transform, target):
    while True:
        item = (yield)
        transformed_item = transform(item)
        try:
            target.send(transformed_item)
        except StopIteration as e:
            return e.value

Used like so,

>>> printer = rprint(sep=', ', end='\nDONE!\n')
>>> count_to_nine = range(10)
>>> poisson_source(rate=0.5, iterable=count_to_nine, target=mapper(transform=square, target=printer))
0, 1, 4, 9, 16, 25, 36, 49, 64, 81
DONE!

From here, you can see how we could also implement equivalents of filter(), reduce() and so on to operate on the 'push' event stream modelled by Python coroutines.

The point here is that we can't just re-use any existing functions which process 'pull' data series – such as the functions in itertools – with 'push' data series. Each and every function needs to be reimplemented to accept values pushed from upstream, and send processed results downstream.

Transducing events

Transducers provide a way out of this quandary. We've demonstrated earlier in this series that 'reduce' is a fundamental operation, and by reimagining reduce() into a more general transduce() we were able to use the same transducers to operate on both eager and lazy data series. We can do the same with coroutine-based push events, by implementing a version of transduce() which allows us to use any transducer to process a stream of such events.

Our reactive_transduce() is a coroutine which accepts two arguments: a transducer and a target sink to which the transduced results will be sent:

@coroutine
def reactive_transduce(transducer, target=None):
    reducer = transducer(sending())
    accumulator = target if (target is not None) else reducer.initial()
    try:
        while True:
            item = (yield)
            accumulator = reducer.step(accumulator, item)
            if isinstance(accumulator, Reduced):
                accumulator = accumulator.value
                break
    except GeneratorExit:
        pass
    return reducer.complete(accumulator)

The reactive_transduce() function connects to the upstream end of a transducer chain, adapting from the coroutine protocol to the reducer interface. At the downstream end of the transducer chain, we need to adapt the other way, from the reducer interface to the coroutine protocol. To do this we use a reducer called Sending, which we hard-wire as the 'bottom' reducer on the first line of reactive_transduce(). The Sending reducer looks like this:

class Sending:
    def initial(self):
        return null_sink()

    def step(self, result, item):
        try:
            result.send(item)
        except StopIteration:
            return Reduced(result)
        else:
            return result

    def complete(result):
        result.close()
        return result

The step() method literally sends the next item to the result – which must therefore be a legitimate event sink. Should the sink indicate that it can't accept a further item, by raising StopIteration we return the result wrapped in the Reduced sentinel. The initial() method provides a legitimate sink – just a simple do-nothing sink defined as:

@coroutine
def null_sink():
    while True:
        _ = (yield)

Going back to reactive_transduce() the main loop continues to iterate, receiving new values via a yield expression, until such time as GeneratorExit is signalled by the client or the reducer signals termination by returning Reduced.

When the main loop is exited by whatever means, we give the reducer opportunity to complete(), and the Sending.complete() method ensures that close() is called on the target.

With these pieces in place, let's look at how to use reactive_transduce(). We'll reproduce our previous example where we squared the output from poisson_source(), but this time using the mapping() transducer to do the work:

>>> poisson_source(rate=0.5,
...                iterable=range(10),
...                target=transduce(transducer=mapping(square),
...                target=printer))
...
0, 1, 4, 9, 16, 25, 36, 49, 64, 81
DONE!

The key point here is that we can now take an arbitrary transducer and reuse it with eager collections, lazy iterables, and push-events! In fact, simply by devising an appropriate transduce function we can use re-use our transducers in an arbitrary data-series processing context.

This is the true power of transducers: Data processing components completely abstracted away from how the input data arrives, or to where the output results are sent.

Lazy Transducer Evaluation

Rob Smallshire from Good With Computers

In the previous article in this series on transducers we looked at transducers which push more items downstream through the reducer chain than they receive from upstream. We promised that this would make lazy evaluation of transducer chains quite interesting.

When used with our transduce() function, our mapping and filtering transducers are in some ways less flexible than the map() and filter() functions built into Python 3 because our transduce() eagerly evaluates the reduction operation, whereas the built-in map() and filter() are lazy. [1]

The eagerness of our mapping and filtering transducers is not inherent in their implementation though. The eagerness is a result of the for-loop in transduce() which must run to completion before returning. Thankfully, due to the clear separation of concerns between the reduction algorithm embodied in the transducers and the transducer "driver", we can design an alternative transducible process which is lazy.

Here's a reminder of our non-lazy transduce() function:

UNSET = object()

def transduce(transducer, reducer, iterable, init=UNSET):
    r = transducer(reducer)
    accumulator = init if (init is not UNSET) else reducer.initial()
    for item in iterable:
        accumulator = r.step(accumulator, item)
        if isinstance(accumulator, Reduced):
            accumulator = accumulator.value
            break
    return r.complete(accumulator)

Recall that our non-lazy transduce() function accepts, in addition to the transducer, a separate reducer argument which is used to collect the results of applying the transducer into, say, a list. Our lazy transduction function will be implemented as a Python generator function which yields each result as it becomes available, returning control to the caller, and then resumes execution when the next value is requested.

In order to handle early terminating transducers such as First, stateful transducers which emit left-over state such as Batching, and transducers which emit more elements than they consume such as Repeating, the lazy_transduce() function is necessarily quite complex:

from collections import deque

def lazy_transduce(transducer, iterable):
    """Lazy application of a transducer to an iterable."""
    r = transducer(Appending())
    accumulator = deque()
    reduced = False
    for item in iterable:
        accumulator = r.step(accumulator, item)
        if isinstance(accumulator, Reduced):
            accumulator = accumulator.value
            reduced = True

        yield from all_pending_items_in(accumulator)

        if reduced:
            break

    left_overs = r.complete(accumulator)
    assert left_overs is accumulator

    yield from all_pending_item_in(left_overs)

def all_pending_items_in(queue):
    while queue:
        yield queue.popleft()

Our function accepts only a transducer and the iterable series of source items. There's no need to provide a reducer, because this function hardwires it's own on the first line, where we provide an Appending reducer. Notice that unlike the eager transduce() we never call the Appending.initial() method to retrieve the seed value for the reduction, so we must provide a legitimate mutable sequence type. For reasons that will become clear shortly, we provide a deque from the Python Standard Library collections module [2] - a double-ended queue, which supports append() to push items into the right-hand end.

We also set a flag reduced so we know when we're finished.

The first part of the body of the for-loop is the same as for eager transduce(): we step the transducer, accumulating each item, looking for the sentinel Reduced value as we go. If we encounter Reduced we un-box its contents and set the reduced flag to signal that we're (nearly) done.

The next part of the for-loop body is where things really diverge from the eager transduce() version. Bearing in mind that the call to step() may have appended multiple items to the accumulator, we now need to yield them one by-one to the client. We do this using the yield from statement which delegates to another generator function all_items_pending_in() which simply keeps yielding items from the queue until it is empty.

At the end of the for-loop, we check the reduced flag, and break out of the loop if we're done.

After the loop, with all the input items dealt with, we make the necessary call to complete(), bearing in mind that this may append further results to the accumulator queue. After a sanity check that the return value from complete() is indeed the queue (which we know it should be, because Appending.complete() simply returns its argument) we use the yield from all_pending_items_in(left_overs) statement one last time to yield any lingering results to the client.

In order to demonstrate the laziness in action, we'll create a little wrapper around the built-in range() sequence that logs the yielded integers to the console:

def logging_range(n):
    for i in range(n):
        print("i =", i)
        yield i

Here it in in action, demonstrating it's laziness:

>>> primes_repeating = compose(filtering(is_prime), repeating(3))
>>> repeated_primes = lazy_transduce(primes_repeating, logging_range(100))
>>> repeated_primes
>>> next(repeated_primes)
i = 0
i = 1
i = 2
2
>>> next(repeated_primes)
2
>>> next(repeated_primes)
2
>>> next(repeated_primes)
i = 3
3
>>> next(repeated_primes)
3
>>> next(repeated_primes)
3
>>> next(repeated_primes)
i = 4
i = 5
5
>>> next(repeated_primes)
5
>>> next(repeated_primes)
5
>>> next(repeated_primes)
i = 6
i = 7
7
>>> next(repeated_primes)
7
>>> next(repeated_primes)
7
>>> next(repeated_primes)
i = 8
i = 9
i = 10
i = 11
11
>>> next(repeated_primes)
11
>>> next(repeated_primes)
11
>>> next(repeated_primes)
i = 12
i = 13
13

So we see that transducers allow orthogonal specification of the reducing operation, the result collection and whether to evaluate eagerly or lazily. Neat!

In a future article we'll look at using transducers to process 'push' events modelled by Python coroutines.

[1]Back in Python 2 map() and filter() were eager.
[2]The documentation for the Python collections.deque double-ended queue.

Item Injecting Transducers

Rob Smallshire from Good With Computers

In the previous article in our series on understanding transducers through Python we showed how to support early termination of a reduction operation. This time, we'll demonstrate how transducers can produce more items than they consume. Although this may seem obvious, it leads to some important consequences for implementing lazy evaluation of transducers, which is what we'll look at next time.

Consider a transducer Repeating which repeats each source item multiple times into the output:

class Repeating:

    def __init__(self, reducer, num_times):
        self._reducer = reducer
        self._num_times = num_times

    def initial(self):
        return self._reducer.initial()

    def step(self, result, item):
        for _ in range(self._num_times):
            result = self._reducer.step(result, item)
        return result

    def complete(self, result):
        return self._reducer.complete(result)

    def repeating(num_times):

        if num_times < 0:
            raise ValueError("num_times cannot be negative")

        def repeating_transducer(reducer):
            return Repeating(reducer, num_times)

        return repeating_transducer

The key point to notice here, is that each call to Repeating.step() results in multiple calls to the underlying reducer's self._reducer.step(), thereby injecting more items into the output series than are received in the input series.

By composing it with our filtering primality checking predicate, we can use it to repeat each prime number three times:

>>> primes_repeating = compose(filtering(is_prime), repeating(3))
>>> transduce(primes_repeating, Appending(), range(100))
[2, 2, 2, 3, 3, 3, 5, 5, 5, 7, 7, 7, 11, 11, 11, 13, 13, 13, 17, 17,
 17, 19, 19, 19, 23, 23, 23, 29, 29, 29, 31, 31, 31, 37, 37, 37, 41,
 41, 41, 43, 43, 43, 47, 47, 47, 53, 53, 53, 59, 59, 59, 61, 61, 61,
 67, 67, 67, 71, 71, 71, 73, 73, 73, 79, 79, 79, 83, 83, 83, 89, 89,
 89, 97, 97, 97]

In the next article, we'll see that although seemingly fairly innocuous, support for item injecting transducers such as Repeating complicates lazy evaluation quite a bit!

Terminating Transducers

Rob Smallshire from Good With Computers

In the previous article in this series on transducers, we showed how to implement stateful transducers, and how to deal with any left-over state or other clean-up operations when the reduction operation is complete. Sometimes, however, there is no need to process a whole series of items in order to produce the final result. For example, if we just want the first item from a series, we only need to process the first item. Our existing implementation of transduce() looks like this:

UNSET = object()

def transduce(transducer, reducer, iterable, init=UNSET):
    r = transducer(reducer)
    accumulator = init if (init is not UNSET) else reducer.initial()
    for item in iterable:
        accumulator = r.step(accumulator, item)
    return r.complete(accumulator)

It uses a for-loop to iteratively apply the reducing function, but there is no way of exiting the loop early.

To accommodate early termination, we'll allow our step() method to return a sentinel value indicating that reduction is complete. This sentinel will actually be a 'box' called called Reduced which we can detect by type, and which will contain the final value:

class Reduced:
    """A sentinel 'box' used to return the final value of a reduction."""

    def __init__(self, value):
        self._value = value

    @property
    def value(self):
        return self._value

It has only an initialiser which accepts a single value, and a property to provide read-only access to that value.

Our updated Reduced detecting transduce() function looks like this:

def transduce(transducer, reducer, iterable, init=UNSET):
    r = transducer(reducer)
    accumulator = init if (init is not UNSET) else reducer.initial()
    for item in iterable:
        accumulator = r.step(accumulator, item)
        if isinstance(accumulator, Reduced):
            accumulator = accumulator.value
            break
    return r.complete(accumulator)

When we detect Reduced we simply un-box its value and then break from the loop.

Our First transducer, which accepts an optional predicate looks like this:

class First:

    def __init__(self, reducer, predicate):
        self._reducer = reducer
        self._predicate = predicate

    def initial(self):
        return self._reducer.initial()

    def step(self, result, item):
        return Reduced(self._reducer.step(result, item)) if self._predicate(item) else result

    def complete(self, result):
        return self._reducer.complete(result)

    def first(predicate=None):
        predicate = true if predicate is None else predicate

        def first_transducer(reducer):
            return First(reducer, predicate)

        return first_transducer

Notice that true here can be passed to the transducer constructor in lieu of the predicate function being supplied; this isn't the Python constant True but a function which always returns True, irrespective of what it is passed. We need to define ourselves:

def true(*args, **kwargs):
    return True

Putting it all together, we get:

>>> transduce(
...   compose(
...     filtering(is_prime),
...     mapping(square),
...     first(lambda x: x > 1000)),
...   Appending(),
...   range(1000))
[1369]

Notice that single result is returned as the only element of a list. This is because we used Appending as our reducer. If we'd prefer a scalar value to be returned, we can simply define a new reducer called ExpectingSingle that only expects exactly one step() operation to be performed:

class ExpectingSingle:

    def __init__(self):
        self._num_steps = 0

    def initial(self):
        return None

    def step(self, result, item):
        assert result is None
        self._num_steps += 1
        if self._num_steps > 1:
            raise RuntimeError("Too many steps!")
        return item

    def complete(self, result):
        if self._num_steps < 1:
            raise RuntimeError("Too few steps!")
        return result

Reattempting our example, we now get a scalar value:

.. code-block:: python
>>> transduce(
...   compose(
...     filtering(is_prime),
...     mapping(square),
...     first(lambda x: x > 1000)),
...   ExpectingSingle(),
...   range(1000))
1369

We've now exercised all the parts of the transducer protocol:

  • Association of the initial value through initial()
  • Incremental reduction through step()
  • Completion and clean-up of state through complete()
  • Signalling early completion with Reduced()

In the next article, we'll show how this protocol allows transducers to produce more items than they consume, which may be obvious, be is an important case to be handled when we implement lazy transduction in a future article.

Stateful Transducers

Rob Smallshire from Good With Computers

In the previous article in this series on transducers we saw how we can develop the notion of the transducer from a single function which literally transforms reducers to a more capable protocol which supports two further capabilities: First of all, the association of initial 'seed' values with a reduction operation, and secondly the opportunity for cleanup for stateful transducers. So far, we've exercised the first capability, but not the second. To demonstrate clean-up, we need to introduce stateful transducers.

The mapping and filtering transducers we have seen so far are stateless. What this means is that the result for the current item being processed depends only on the values of the result accumulated so far and the new item. We can, however, make stateful transducers, and the fact that our Python transducers are classes makes this particularly easy, because it gives us an obvious place to store the state, in instances of those classes. Perhaps the simplest example is an enumerating transducer which keeps track of item indexes and accumulates (index, item) tuple pairs into the result:

class Enumerating:

    def __init__(self, reducer, start):
        self._reducer = reducer
        self._counter = start

    def initial(self):
        return self._reducer.initial()

    def step(self, result, item):
        index = self._counter
        self._counter += 1
        return self._reducer.step(result, (index, item))

    def complete(self, result):
        return self._reducer.complete(result)

    def enumerating(start=0):
        """Create a transducer which enumerates items."""

        def enumerating_transducer(reducer):
            return Enumerating(reducer, start)

        return enumerating_transducer

We'll use this by composing it onto the end of our existing transducer chain:

>>> square_primes_transducer = compose(
...     filtering(is_prime),
...     mapping(square))
>>>
>>> enumerated_square_primes_transducer = compose(
...     square_primes_transducer,
...     enumerating())
>>>
>>> appending_reducer = Appending()
>>>
>>> transduce(enumerated_square_primes_transducer,
...     appending_reducer,
...     range(100))
[(0, 4), (1, 9), (2, 25), (3, 49), (4, 121), (5, 169), (6, 289),
(7, 361), (8, 529), (9, 841), (10, 961), (11, 1369), (12, 1681),
(13, 1849), (14, 2209), (15, 2809), (16, 3481), (17, 3721),
(18, 4489), (19, 5041), (20, 5329), (21, 6241), (22, 6889),
(23, 7921), (24, 9409)]

Cleaning up left-over state

So far, the implementations of the complete() method in our transducers haven't been very interesting. They've simply delegated the call to next reducer in the chain. At the end of the chain, the complete() implementations of the Appending or Conjoining reducers simply return whatever was passed to them.

Sometimes, the state accumulated within the transducer needs to be returned as part of the final result. For example, consider a batching transducer which collects successive items together into non-overlapping groups of a specified size. The transducer maintains a pending batch as internal state, and when the batch has grown to the requisite size, accumulates it into the result. When we reach the end of the input data, there may be a partial batch. If our design calls for returning the partial batch, we need a way to detect the end of processing and deal with any internal state. This is where the complete() method comes into play. Here's our batching transducer and its corresponding transducer factory:

class Batching:

    def __init__(self, reducer, size):
        self._reducer = reducer
        self._size = size
        self._pending = []

    def initial(self):
        return self._reducer.initial()

    def step(self, result, item):
        self._pending.append(item)
        if len(self._pending) == self._size:
            batch = self._pending
            self._pending = []
            return self._reducer.step(result, batch)
        return result

def complete(self, result):
    r = self._reducer.step(result, self._pending) if len(self._pending) > 0 else result
    return self._reducer.complete(r)

def batching(size):
    """Create a transducer which produces non-overlapping batches."""

    if size < 1:
        raise ValueError("batching() size must be at least 1")

    def batching_transducer(reducer):
        return Batching(reducer, size)

    return batching_transducer

Here we see that the complete method, calls step() on the underlying reducer one more time to pass on the partial batch. Here it is in action:

>>> batched_primes_transducer = compose(filtering(is_prime), batching(3))
>>> transduce(batched_primes_transducer, Appending(), range(100))
[[2, 3, 5], [7, 11, 13], [17, 19, 23], [29, 31, 37], [41, 43, 47],
[53, 59, 61], [67, 71, 73], [79, 83, 89], [97]]

Notice in particular the partial batch included at the end.

With stateful transducers and special handling of result completion and clean-up in place, in the next article we'll look at how to signal and detect early termination of a reduction operation, such as occurs when searching for and finding an item in a data series.

Enriching the Transducer Protocol

Rob Smallshire from Good With Computers

In the previous article in the series we looked at improving the experience of composing transducers together in Python, by introducing a compose() function. We finished by showing this snippet, which composes a filtering transducer with a mapping transducer to produce a prime-squaring transducer. Recalling that transducers are used to transform-reducers, we pass an appending reducer to the prime-squaring transducer to get a prime-squaring-appending reducer. This is passed in turn to reduce(), along with an input range and an empty seed list for the result:

>>> reduce(compose(filtering(is_prime),
...                mapping(square))
...        (appender), # appender assumes a MUTABLE-sequence
...        range(20),
...        []) # list is a MUTABLE sequence
[4, 9, 25, 49, 121, 169, 289, 361]

And therein lies the rub. There's a fairly well disguised implicit dependency here, between the empty list we've passed as the initial value for the reduction and our passing of appender() as the ultimate reducer. We can illustrate this by passing an immutable sequence type, which doesn't support append(), rather than a mutable sequence type, which does. Look what happens if we pass in an empty tuple instead of an empty list:

>>> reduce(compose(filtering(is_prime),
...                mapping(square))
...        (appender), # appender assumes a MUTABLE-sequence
...        range(20),
...        tuple()) # tuple is an IMMUTABLE sequence
Traceback (most recent call last):
  File "", line 1, in
  File "", line 4, in filter_reducer
  File "", line 4, in map_reducer
  File "", line 2, in appender
AttributeError: 'tuple' object has no attribute 'append'

We can "fix" this by passing another reducer, rather than appender, called conjoiner [1]:

def conjoiner(result, item):
    return result + type(result)((item,))

which we can use like this:

>>> reduce(compose(filtering(is_prime),
...                mapping(square))
...        (conjoiner), # conjoiner assumes an IMMUTABLE-sequence
...        range(20),
...        tuple()) # tuple is an IMMUTABLE sequence
(4, 9, 25, 49, 121, 169, 289, 361)

Notice that the result is now enclosed in parentheses rather than square brackets, indicating that it is a tuple.

In order to address the fact that the ultimate reducer and the seed value will often need to change in sympathy, meaning that if one changes we need to remember to change the other, we'll to enrich the transducer interface. It will got from being a simple function call, to something that is at once more complex and more capable. To understand what those complexities are, we'll refer back to the Clojure archetype.

Examining the Clojure original

Our code has a very general form, but it is lacking features of the Clojure original, such as early termination of the reduction process. Let's look at the Clojure original for map [2] when called with a single argument:

(defn map
  ([f]
  (fn [rf]
    (fn
      ([] (rf))
      ([result] (rf result))
      ([result input]
        (rf result (f input)))
      ([result input & inputs]
        (rf result (apply f input inputs))))))

This may not be very clear - even if you can read Clojure! - so let's annotate it with some comments:

(defn map ;; The tranducer factory...
  ([f] ;; ...accepts a single argument 'f', the
  ;; transforming function
  (fn [rf] ;; The transducer function accepts a
    ;; reducing function 'rf'
    (fn ;; This is the reducing function returned
      ;; by the transducer

      ([] (rf)) ;; 0-arity : Forward to the zero-arity
      ;; reducing function 'rf'

      ([result] (rf result)) ;; 1-arity : Forward to the one-arity
      ;; reducing function 'rf'

      ([result input] ;; 2-arity : Perform the reduction with
        ;; one arg to 'f'
        (rf result (f input)))

      ([result input & inputs] ;; n-arity : Perform the reduction with
        ;; multiple args to 'f'
        (rf result (apply f input inputs))))))

Here's our reducing function in Python, which only implements the equivalent of the 2-arity version which performs the actual reduction:

def map_reducer(result, item):
    return reducer(result, transform(item))

The Clojure definitions of the zero- and one-arity reduction functions don't provide much clue as to what they are for - they're just contract preserving functions which forward from the 'new' reducer to the underlying reducer which has been wrapped by it.

In fact, the zero-arity function is called to produce the initial seed value when one isn't provided. For example, for addition the seed needs to be zero [3], for multiplication the seed needs to be one [4] , and in our Python examples for appending the seed should be the empty list, and for conjoining the seed should be an empty tuple. The map reducer simply delegates this to the underlying reducer, since it can't know – and indeed shouldn't know – upon which kind of data structure it is operating.

The one-arity function, which accepts only the intermediate result and no further input is used to perform transducer chain clean-up or reduction to a final result when processing of the sequence is complete or terminated early. This is useful for certain stateful transducers which need to deal with any left-over state. We'll look at some examples later.

So to document our improved understanding in comments:

(defn map ;; The tranducer factory...
  ([f] ;; ...accepts a single argument 'f', the
  ;; transforming function
  (fn [rf] ;; The transducer function accepts a
    ;; reducing function 'rf'
    (fn ;; This is the reducing function returned
      ;; by the transducer

      ([] (rf)) ;; 0-arity : Return a 'seed' value
      ;; obtained from 'rf'

      ([result] (rf result)) ;; 1-arity : Obtain final result from 'rf'
      ;; and clean-up

      ([result input] ;; 2-arity : Perform the reduction with
        ;; one arg to 'f'
        (rf result (f input)))

      ([result input & inputs] ;; n-arity : Perform the reduction with
        ;; multiple args to 'f'
        (rf result (apply f input inputs))))))

In fact, to fully implement the concepts inherent in Clojure reducers and transducers we need to do more work in our Python version to support:

  1. Explicit (although optional) association of the seed value with the reduction operation
  2. Early termination of reduction processes. For example, a search can terminate early without needing to reducing a whole series
  3. Reduction to a final value and opportunity to clean-up left-over state

Clojure supports these distinct behaviours through different arity versions of the same anonymous reducing function. Python doesn't support overloading on arity, and in any case, overloading on arity in order to support different operations can seem obtuse. [5] We have a perfectly good tool for bundling related named functions together in Python, and that tool is the class.

In the next phase, we'll convert our reducing functions into classes and necessarily replace our use of the Python Standard Library reduce() function with something a little more sophisticated which can support our new class-based reducers.

In Python, the conceptual interface to a reducer, will look like this:

class Reducer:

    def __init__(self, reducer): # Construct from reducing function
        pass

    def initial(self): # Return the initial seed value
        pass # 0-arity

    def step(self, result, item): # Next step in the reduction
        pass # 2-arity

    def complete(self, result): # Produce a final result and clean up
        pass # 1-arity

Notice that the __init__() function – and therefore the class – is a transducer. It accepts a reducer and returns a reducer!

new_reducer = Reducer(reducer)

It takes a particularly clear-minded and highly-caffeinated state to appreciate that the class is a transducer but instances of the class are reducers! In fact, we've found it so confusing, that we generally wrap the constructor call in another function with a more appropriate name:

def transducer(reducer):
    return Reducer(reducer)

More concretely, here is our mapping() transducer factory, the transducing function and the reducer it creates:

def mapping(transform):

    def mapping_transducer(reducer):
        return Mapping(reducer, transform)

    return mapping_transducer

Let's implement our Mapping reducer cum transducer class:

class Mapping:

    def __init__(self, reducer, transform):
        self._reducer = reducer
        self._transform = transform

    def initial(self):
        return self._reducer.initial()

    def step(self, result, item):
        return self._reducer.step(result, self._transform(item))

    def complete(self, result):
        return self._reducer.complete(result)

In the absence of any necessary behaviours specific to a particular reduction algorithm, the initial(), step() and complete() methods simply forward to the next reducer in the chain (self._reducer). The only behaviour here specialised for Mapping is to apply self._transform() to the item before passing the result down the chain.

And here's our filtering transducer-factory together with the Filtering reducer cum transducer:

class Filtering:

    def __init__(self, reducer, predicate):
        self._reducer = reducer
        self._predicate = predicate

    def initial(self):
        return self._reducer.initial()

    def step(self, result, item):
        return self._reducer.step(result, item) if self._predicate(item)
        else result

    def complete(self, result):
        return self._reducer.complete(result)

    def filtering(predicate):

        def filtering_transducer(reducer):
            return Filtering(reducer, predicate)

        return filtering_transducer

To allow the chain of reducers produced by our transducers to terminate in a regular reducer, such as appending, we'll replace our appending and conjoining reducing functions with classes which sport the same interface as our other reducers:

class Appending:

    def initial(self):
        return []

    def step(self, result, item):
        result.append(item)
        return result

    def complete(self, result):
        return result

class Conjoining:

    def initial(self):
        return tuple()

    def step(self, result, item):
        return result + type(result)((item,))

    def complete(self, result):
        return result

These two reducing classes have no internal state, and hence no need for initialisation functions, but crucially, we use the ability afforded by the initial() method to associate a seed value with the reducing operation. [[[Being stateless, we could have decorated the methods of these reducers with @staticmethod; we haven't done so though, to avoid detracting from the important similarity between our reducer and transducer classes.]]]

To make use of our class-based transducers, we need an alternative to reduce() which understands our new transducer/reducer protocol. Following Clojure's lead, we will call it transduce():

UNSET = object()

def transduce(transducer, reducer, iterable, init=UNSET):
    r = transducer(reducer)
    accumulator = init if (init is not UNSET) else r.initial()
    for item in iterable:
        accumulator = r.step(accumulator, item)
    return r.complete(accumulator)

We supply the reducer separately, rather than bundling it up inside the transducer object, because it contains the knowledge of how to accumulate the final result. Excluding that from our transducer definition, allows us to keep our transducer more general and reusable without committing to a particular result representation. For example, we might compose a complex transducer and want to keep that separate from whether the final result is accumulated in a list or in a tuple.

Let's try to use our new transduce() function to apply a transducer to a list of numbers. We'll do this step-by-step to keep things clear. First we'll compose the transducer from a filtering and and mapping:

>>> square_primes_transducer = compose(
...     filtering(is_prime),
...     mapping(square))

Then we'll construct the reducer which will accumulate the final result. We want a list, so we'll use Appending:

>>> appending_reducer = Appending()

Now we'll pass these to transduce():

>>> transduce(square_primes_transducer, appending_reducer, range(100))
[4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849,
2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409]

Et voila!

By using transduce() and enriching our notion of what a reducer looks like, we no longer need to separately specify the seed value. If we want a tuple, we can use a different reducer:

>>> conjoining_reducer = Conjoining()
>>> transduce(square_primes_transducer, conjoining_reducer, range(100))
(4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849,
2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409)

This decoupling of the transducer processing pipeline from the result type may not seem important in this example, but as we see later, it buys us a great deal of flexibility and re-use potential.

In the next article, we'll look at stateful transducers, and how having our transducers implemented as classes makes this particularly straightforward.

[1]conjoin verb To join together. There is also an equivalent Clojure function conj, and Clojure/conj is a Clojure programming conference.
[2]The definition of the mapping transducer factory source code on Github.
[3]We say the additive identity is zero.
[4]We say the multiplicative identity is one.
[5]It seems I'm not the only person who found Clojure's use of overloading by arity an impediment to understanding transducers. In fact, overloading by arity is incidental to the concept of transducers, and a curiosity of the Clojure archetype.

Improving Transducer Composition

Rob Smallshire from Good With Computers

In the previous article in this series we derived a Python implementation of transducers from first principles. We finished by showing how transducers can be composed together using regular function call application to give us a single composite reducer which can perform many operations with a single pass of reduce(). Specifically, we showed how to filter a range of integers using a primality testing predicate, and then mapped a squaring function over the primes, to give prime squares:

>>> reduce(filtering(
...     predicate=is_prime)(
...         reducer=mapping(
...             transform=square)(
...                 reducer=appender)),
...     range(20),
...     [])
[4, 9, 25, 49, 121, 169, 289, 361]

Although this clearly works, composing transducers this way quickly becomes ungainly and the code certainly has a Lisp-ish flavour. Keeping track of the parentheses in Python, when we have function calls which return functions which we immediately call, is somewhat awkward. Most functional programming languages include a function called "compose" to help with composing functions; many imperative programming languages do not, including Python, so we'll have to write one:

def compose(f, *fs):
    """Compose functions right to left.

    compose(f, g, h)(x) -> f(g(h(x)))

    Args:
    f, *fs: The head and rest of a sequence of callables. The
        rightmost function passed can accept any arguments and
        the returned function will have the same signature as
        this last provided function. All preceding functions
        must be unary.

    Returns:
        The composition of the argument functions. The returned
        function will accept the same arguments as the rightmost
        passed in function.
    """
    rfs = list(chain([f], fs))
    rfs.reverse()

    def composed(\*args, \*\*kwargs):
        return reduce(
            lambda result, fn: fn(result),
            rfs[1:],
            rfs[0](\*args, \*\*kwargs))

    return composed

The signature of compose() forces us to accept at least one argument. The first part of the function reassembles the supplied arguments into a single list and reverses it to put it in first-to-last application order. We then define the inner composed() function which uses reduce() over the list of functions to apply each in turn, carrying the intermediate results forward. Any arguments to the composed() function are forwarded to the first function in the chain.

With compose() in our armoury, it becomes somewhat easier to specify multi-step composite reductions using transducers:

>>> reduce(compose(filtering(is_prime), mapping(square))(appender), range(20), [])
[4, 9, 25, 49, 121, 169, 289, 361]

This becomes even clearer if we put in some line breaks:

>>> reduce(compose(filtering(is_prime), mapping(square)) (appender), range(20), [])
[4, 9, 25, 49, 121, 169, 289, 361]

Now it's hopefully easier to see that the call to compose() produces a new transducer to which we pass the appender reducer to get a composite reducer which performs filtering, mapping and appending in one step. It is this composite reducer we pass to reduce() along with the input range and the empty list seed value.

In the next article in our series on transducers, we'll look at fixing some of the not-so-obvious shortcomings of the previous snippet and bringing the capabilities of our Python transducers more in line with those of the Clojure originals.

Understanding Transducers through Python

Rob Smallshire from Good With Computers

In this series we take an in-depth look at transducers. Transducers - a portmanteau of "transform reducers" - are a new functional programming concept introduced into the Clojure programming language. Although transducers are actually pretty straightforward in retrospect, wrapping your brain around them, especially if you're not already a competent Clojureist, can be challenging.

In this series, we introduce transducers by implementing them from scratch in everybody's favourite executable pseudocode, Python. We'll start with the familiar staples of functional programming, map(), filter() and reduce(), and derive transducers from first principles. We'll work towards a set of general tools which works with eager collections, lazy "pull" sequences, and "push" event streams. Along the way we"ll cover stateful transducers and transducer composition, demonstrating that transducers are both more general, and more fundamental, than the functional programming tools baked into Python and many other languages.

By the end of this series, not only should transducers make sense to you, but you"ll have a recipe for implementing transducers in your own favourite programming language.